def test_gaussian_derivatives(): num_visible_units = 100 num_hidden_units = 50 batch_size = 25 # set a seed for the random number generator be.set_seed() # set up some layer and model objects vis_layer = layers.GaussianLayer(num_visible_units) hid_layer = layers.GaussianLayer(num_hidden_units) rbm = hidden.Model([vis_layer, hid_layer]) # randomly set the intrinsic model parameters a = be.randn((num_visible_units, )) b = be.randn((num_hidden_units, )) log_var_a = 0.1 * be.randn((num_visible_units, )) log_var_b = 0.1 * be.randn((num_hidden_units, )) W = be.randn((num_visible_units, num_hidden_units)) rbm.layers[0].int_params.loc[:] = a rbm.layers[1].int_params.loc[:] = b rbm.layers[0].int_params.log_var[:] = log_var_a rbm.layers[1].int_params.log_var[:] = log_var_b rbm.weights[0].int_params.matrix[:] = W # generate a random batch of data vdata = rbm.layers[0].random((batch_size, num_visible_units)) visible_var = be.exp(log_var_a) vdata_scaled = vdata / be.broadcast(visible_var, vdata) # compute the mean of the hidden layer rbm.layers[1].update([vdata_scaled], [rbm.weights[0].W()]) hidden_var = be.exp(log_var_b) hid_mean = rbm.layers[1].mean() hid_mean_scaled = rbm.layers[1].rescale(hid_mean) # compute the derivatives d_vis_loc = -be.mean(vdata_scaled, axis=0) d_vis_logvar = -0.5 * be.mean(be.square(be.subtract(a, vdata)), axis=0) d_vis_logvar += be.batch_dot( hid_mean_scaled, be.transpose(W), vdata, axis=0) / len(vdata) d_vis_logvar /= visible_var d_hid_loc = -be.mean(hid_mean_scaled, axis=0) d_hid_logvar = -0.5 * be.mean( be.square(hid_mean - be.broadcast(b, hid_mean)), axis=0) d_hid_logvar += be.batch_dot(vdata_scaled, W, hid_mean, axis=0) / len(hid_mean) d_hid_logvar /= hidden_var d_W = -be.batch_outer(vdata_scaled, hid_mean_scaled) / len(vdata_scaled) # compute the derivatives using the layer functions rbm.layers[1].update([vdata_scaled], [rbm.weights[0].W()]) rbm.layers[0].update([hid_mean_scaled], [rbm.weights[0].W_T()]) vis_derivs = rbm.layers[0].derivatives(vdata, [hid_mean_scaled], [rbm.weights[0].W()]) hid_derivs = rbm.layers[1].derivatives(hid_mean, [vdata_scaled], [rbm.weights[0].W_T()]) weight_derivs = rbm.weights[0].derivatives(vdata_scaled, hid_mean_scaled) assert be.allclose(d_vis_loc, vis_derivs.loc), \ "derivative of visible loc wrong in gaussian-gaussian rbm" assert be.allclose(d_hid_loc, hid_derivs.loc), \ "derivative of hidden loc wrong in gaussian-gaussian rbm" assert be.allclose(d_vis_logvar, vis_derivs.log_var, rtol=1e-05, atol=1e-01), \ "derivative of visible log_var wrong in gaussian-gaussian rbm" assert be.allclose(d_hid_logvar, hid_derivs.log_var, rtol=1e-05, atol=1e-01), \ "derivative of hidden log_var wrong in gaussian-gaussian rbm" assert be.allclose(d_W, weight_derivs.matrix), \ "derivative of weights wrong in gaussian-gaussian rbm"
def test_gaussian_derivatives(): num_visible_units = 100 num_hidden_units = 50 batch_size = 25 # set a seed for the random number generator be.set_seed() # set up some layer and model objects vis_layer = layers.GaussianLayer(num_visible_units) hid_layer = layers.GaussianLayer(num_hidden_units) rbm = BoltzmannMachine([vis_layer, hid_layer]) # randomly set the intrinsic model parameters a = be.randn((num_visible_units,)) b = be.randn((num_hidden_units,)) log_var_a = 0.1 * be.randn((num_visible_units,)) log_var_b = 0.1 * be.randn((num_hidden_units,)) W = be.randn((num_visible_units, num_hidden_units)) rbm.layers[0].params.loc[:] = a rbm.layers[1].params.loc[:] = b rbm.layers[0].params.log_var[:] = log_var_a rbm.layers[1].params.log_var[:] = log_var_b rbm.connections[0].weights.params.matrix[:] = W # generate a random batch of data vdata = rbm.layers[0].random((batch_size, num_visible_units)) visible_var = be.exp(log_var_a) vdata_scaled = vdata / visible_var # compute the mean of the hidden layer hid_mean = rbm.layers[1].conditional_mean( [vdata_scaled], [rbm.connections[0].W()]) hidden_var = be.exp(log_var_b) hid_mean_scaled = rbm.layers[1].rescale(hid_mean) # compute the derivatives d_vis_loc = be.mean((a-vdata)/visible_var, axis=0) d_vis_logvar = -0.5 * be.mean(be.square(be.subtract(a, vdata)), axis=0) d_vis_logvar += be.batch_quadratic(hid_mean_scaled, be.transpose(W), vdata, axis=0) / len(vdata) d_vis_logvar /= visible_var d_hid_loc = be.mean((b-hid_mean)/hidden_var, axis=0) d_hid_logvar = -0.5 * be.mean(be.square(hid_mean - b), axis=0) d_hid_logvar += be.batch_quadratic(vdata_scaled, W, hid_mean, axis=0) / len(hid_mean) d_hid_logvar /= hidden_var d_W = -be.batch_outer(vdata_scaled, hid_mean_scaled) / len(vdata_scaled) # compute the derivatives using the layer functions vis_derivs = rbm.layers[0].derivatives(vdata, [hid_mean_scaled], [rbm.connections[0].W(trans=True)]) hid_derivs = rbm.layers[1].derivatives(hid_mean, [vdata_scaled], [rbm.connections[0].W()]) weight_derivs = rbm.connections[0].weights.derivatives(vdata_scaled, hid_mean_scaled) # compute simple weighted derivatives using the layer functions scale = 2 scale_func = partial(be.multiply, be.float_scalar(scale)) vis_derivs_scaled = rbm.layers[0].derivatives(vdata, [hid_mean_scaled], [rbm.connections[0].W(trans=True)], weighting_function=scale_func) hid_derivs_scaled = rbm.layers[1].derivatives(hid_mean, [vdata_scaled], [rbm.connections[0].W()], weighting_function=scale_func) weight_derivs_scaled = rbm.connections[0].weights.derivatives(vdata_scaled, hid_mean_scaled, weighting_function=scale_func) assert be.allclose(d_vis_loc, vis_derivs[0].loc), \ "derivative of visible loc wrong in gaussian-gaussian rbm" assert be.allclose(d_hid_loc, hid_derivs[0].loc), \ "derivative of hidden loc wrong in gaussian-gaussian rbm" assert be.allclose(d_vis_logvar, vis_derivs[0].log_var, rtol=1e-05, atol=1e-01), \ "derivative of visible log_var wrong in gaussian-gaussian rbm" assert be.allclose(d_hid_logvar, hid_derivs[0].log_var, rtol=1e-05, atol=1e-01), \ "derivative of hidden log_var wrong in gaussian-gaussian rbm" assert be.allclose(d_W, weight_derivs[0].matrix), \ "derivative of weights wrong in gaussian-gaussian rbm" assert be.allclose(scale * d_vis_loc, vis_derivs_scaled[0].loc), \ "weighted derivative of visible loc wrong in gaussian-gaussian rbm" assert be.allclose(scale * d_hid_loc, hid_derivs_scaled[0].loc), \ "weighted derivative of hidden loc wrong in gaussian-gaussian rbm" assert be.allclose(scale * d_vis_logvar, vis_derivs_scaled[0].log_var, rtol=1e-05, atol=1e-01), \ "weighted derivative of visible log_var wrong in gaussian-gaussian rbm" assert be.allclose(scale * d_hid_logvar, hid_derivs_scaled[0].log_var, rtol=1e-05, atol=1e-01), \ "weighted derivative of hidden log_var wrong in gaussian-gaussian rbm" assert be.allclose(scale * d_W, weight_derivs_scaled[0].matrix), \ "weighted derivative of weights wrong in gaussian-gaussian rbm"
def test_gaussian_update(): num_visible_units = 100 num_hidden_units = 50 batch_size = 25 # set a seed for the random number generator be.set_seed() # set up some layer and model objects vis_layer = layers.GaussianLayer(num_visible_units) hid_layer = layers.GaussianLayer(num_hidden_units) rbm = hidden.Model([vis_layer, hid_layer]) # randomly set the intrinsic model parameters a = be.randn((num_visible_units, )) b = be.randn((num_hidden_units, )) log_var_a = 0.1 * be.randn((num_visible_units, )) log_var_b = 0.1 * be.randn((num_hidden_units, )) W = be.randn((num_visible_units, num_hidden_units)) rbm.layers[0].int_params.loc[:] = a rbm.layers[1].int_params.loc[:] = b rbm.layers[0].int_params.log_var[:] = log_var_a rbm.layers[1].int_params.log_var[:] = log_var_b rbm.weights[0].int_params.matrix[:] = W # generate a random batch of data vdata = rbm.layers[0].random((batch_size, num_visible_units)) hdata = rbm.layers[1].random((batch_size, num_hidden_units)) # compute the variance visible_var = be.exp(log_var_a) hidden_var = be.exp(log_var_b) # rescale the data vdata_scaled = vdata / be.broadcast(visible_var, vdata) hdata_scaled = hdata / be.broadcast(hidden_var, hdata) # test rescale assert be.allclose(vdata_scaled, rbm.layers[0].rescale(vdata)),\ "visible rescale wrong in gaussian-gaussian rbm" assert be.allclose(hdata_scaled, rbm.layers[1].rescale(hdata)),\ "hidden rescale wrong in gaussian-gaussian rbm" # compute the mean hidden_mean = be.dot(vdata_scaled, W) # (batch_size, num_hidden_units) hidden_mean += be.broadcast(b, hidden_mean) visible_mean = be.dot(hdata_scaled, be.transpose(W)) # (batch_size, num_hidden_units) visible_mean += be.broadcast(a, visible_mean) # update the extrinsic parameters using the layer functions rbm.layers[0].update([hdata_scaled], [rbm.weights[0].W_T()]) rbm.layers[1].update([vdata_scaled], [rbm.weights[0].W()]) assert be.allclose(visible_var, rbm.layers[0].ext_params.variance),\ "visible variance wrong in gaussian-gaussian rbm" assert be.allclose(hidden_var, rbm.layers[1].ext_params.variance),\ "hidden variance wrong in gaussian-gaussian rbm" assert be.allclose(visible_mean, rbm.layers[0].ext_params.mean),\ "visible mean wrong in gaussian-gaussian rbm" assert be.allclose(hidden_mean, rbm.layers[1].ext_params.mean),\ "hidden mean wrong in gaussian-gaussian rbm"
def test_gaussian_conditional_params(): num_visible_units = 100 num_hidden_units = 50 batch_size = 25 # set a seed for the random number generator be.set_seed() # set up some layer and model objects vis_layer = layers.GaussianLayer(num_visible_units) hid_layer = layers.GaussianLayer(num_hidden_units) rbm = BoltzmannMachine([vis_layer, hid_layer]) # randomly set the intrinsic model parameters a = be.randn((num_visible_units,)) b = be.randn((num_hidden_units,)) log_var_a = 0.1 * be.randn((num_visible_units,)) log_var_b = 0.1 * be.randn((num_hidden_units,)) W = be.randn((num_visible_units, num_hidden_units)) rbm.layers[0].params.loc[:] = a rbm.layers[1].params.loc[:] = b rbm.layers[0].params.log_var[:] = log_var_a rbm.layers[1].params.log_var[:] = log_var_b rbm.connections[0].weights.params.matrix[:] = W # generate a random batch of data vdata = rbm.layers[0].random((batch_size, num_visible_units)) hdata = rbm.layers[1].random((batch_size, num_hidden_units)) # compute the variance visible_var = be.exp(log_var_a) hidden_var = be.exp(log_var_b) # rescale the data vdata_scaled = vdata / visible_var hdata_scaled = hdata / hidden_var # test rescale assert be.allclose(vdata_scaled, rbm.layers[0].rescale(vdata)),\ "visible rescale wrong in gaussian-gaussian rbm" assert be.allclose(hdata_scaled, rbm.layers[1].rescale(hdata)),\ "hidden rescale wrong in gaussian-gaussian rbm" # compute the mean hidden_mean = be.dot(vdata_scaled, W) # (batch_size, num_hidden_units) hidden_mean += b visible_mean = be.dot(hdata_scaled, be.transpose(W)) # (batch_size, num_hidden_units) visible_mean += a # update the conditional parameters using the layer functions vis_mean_func, vis_var_func = rbm.layers[0].conditional_params( [hdata_scaled], [rbm.connections[0].W(trans=True)]) hid_mean_func, hid_var_func = rbm.layers[1].conditional_params( [vdata_scaled], [rbm.connections[0].W()]) assert be.allclose(visible_var, vis_var_func),\ "visible variance wrong in gaussian-gaussian rbm" assert be.allclose(hidden_var, hid_var_func),\ "hidden variance wrong in gaussian-gaussian rbm" assert be.allclose(visible_mean, vis_mean_func),\ "visible mean wrong in gaussian-gaussian rbm" assert be.allclose(hidden_mean, hid_mean_func),\ "hidden mean wrong in gaussian-gaussian rbm"