def main(): warnings.simplefilter('ignore', tunerwarnings.NewProgramCrash) warnings.simplefilter('ignore', tunerwarnings.TargetNotMet) warnings.simplefilter('ignore', tunerwarnings.NanAccuracy) progress.push() progress.status("compiling benchmarks") pbutil.chdirToPetabricksRoot() pbutil.compilePetabricks(); r, lines = pbutil.loadAndCompileBenchmarks("./scripts/pbbenchmark.tests") if filter(lambda x: x.rv!=0, r): print "compile failed" sys.exit(1) print print "All scores are relative performance to a baseline system." print "Higher is better." print baselines = dict() for line in csv.reader(open("./testdata/configs/baselines.csv")): if len(line)>=3: baselines[line[0]] = line[1:] benchmarks=[] for benchmark, cfg, n, accTarg in lines: try: baseline = baselines[benchmark] except KeyError: baseline = (1.0, 1.0) benchmarks.append(Benchmark(benchmark, cfg, n, accTarg, baseline[0], baseline[1])) print LONGBAR print "Fixed (no autotuning) scores:" print SHORTBAR progress.remainingTicks(len(benchmarks)+3) progress.tick() for b in benchmarks: progress.status("running fixed "+fmtCfg(b.cfg)) b.runFixed() b.printFixed() progress.tick() score_fixed = geomean(map(Benchmark.scoreFixed, benchmarks)) print SHORTBAR print "Fixed Score (pbbenchmark v%s): %.2f" % (VERSION, geomean(map(Benchmark.scoreFixed, benchmarks))) print LONGBAR print print LONGBAR print "Tuned scores:" print SHORTBAR for b in benchmarks: progress.status("running tuned "+fmtCfg(b.cfg)) progress.status("autotuning") b.autotune() b.runTuned() b.printTuned() progress.tick() score_tuned = geomean(map(Benchmark.scoreTuned, benchmarks)) score_training_time = geomean(map(Benchmark.scoreTrainingTime, benchmarks)) print SHORTBAR print "Tuned Score (pbbenchmark v%s): %.2f" % (VERSION, score_tuned) print "Training Time Score (pbbenchmark v%s): %.2f" % (VERSION, score_training_time) print LONGBAR print if DEBUG: print LONGBAR print "Debug:" print SHORTBAR for b in benchmarks: b.printDebug() print LONGBAR print fd = open("./testdata/configs/baselines.csv.latest", "w") for b in benchmarks: print >>fd, "%s, %f, %f" % (b.benchmark, b.tuned_perf['average'], b.tuning_time) fd.close() if not os.path.isdir(LOGDIR): os.mkdir(LOGDIR) for b in benchmarks: writelog(expandLog(b.cfg), b.logEntry()) writelog(expandLog('scores.log'), { 'version' : VERSION, 'score_fixed' : score_fixed, 'score_tuned' : score_tuned, 'score_training_time' : score_training_time, 'hostname' : socket.gethostname(), 'timestamp' : TIMESTAMP, }) progress.tick() progress.status("done") progress.pop()
from optparse import OptionParser parser = OptionParser(usage="usage: smoketest.py [options]") parser.add_option("--learning", action="store_true", dest="learning", default=False, help="enable heuristics learning") parser.add_option("--heuristics", type="string", help="name of the file containing the set of heuristics to use. Automatically enables --learning", default=None) (options, args) = parser.parse_args() if options.heuristics: options.learning = True if options.learning: print "Learning of heuristics is ACTIVE" if options.heuristics: print "Using heuristics file: "+ str(options.heuristics) else: print "Using only heuristics in the database" t1=time.time() results,b=pbutil.loadAndCompileBenchmarks("./scripts/smoketest.tests", args, testBenchmark, postfn=checkBenchmark, learning=options.learning, heuristicSetFileName=options.heuristics, noLearningList=check_exclude) t2=time.time() passed=len(filter(lambda x: x.rv==0, results)) total=len(results) print "%d of %d tests passed (took %.2fs)"%(passed,total,(t2-t1)) sys.exit(min(total-passed, 124))
def main(): warnings.simplefilter('ignore', tunerwarnings.NewProgramCrash) warnings.simplefilter('ignore', tunerwarnings.SmallInputProgramCrash) warnings.simplefilter('ignore', tunerwarnings.TargetNotMet) warnings.simplefilter('ignore', tunerwarnings.NanAccuracy) #Parse input options from optparse import OptionParser parser = OptionParser(usage="usage: pbbenchmark [options]") parser.add_option("--learning", action="store_true", dest="learning", default=False, help="enable heuristics learning") parser.add_option( "--heuristics", type="string", help= "name of the file containing the set of heuristics to use. Automatically enables --learning", default=None) (options, args) = parser.parse_args() if options.heuristics: options.learning = True if options.learning: print "Learning of heuristics is ACTIVE" if options.heuristics: print "Using heuristics file: " + str(options.heuristics) else: print "Using only heuristics in the database" progress.push() progress.status("compiling benchmarks") pbutil.chdirToPetabricksRoot() pbutil.compilePetabricks() global REV try: REV = pbutil.getRevision() except: pass r, lines = pbutil.loadAndCompileBenchmarks( "./scripts/pbbenchmark.tests", searchterms=sys.argv[1:], learning=options.learning, heuristicSetFileName=options.heuristics) if filter(lambda x: x.rv != 0, r): print "compile failed" sys.exit(1) print print "All scores are relative performance to a baseline system." print "Higher is better." print baselines = dict() for line in csv.reader(open("./testdata/configs/baselines.csv")): if len(line) >= 3: baselines[line[0]] = line[1:] benchmarks = [] for benchmark, cfg, n, accTarg in lines: try: baseline = baselines[benchmark] except KeyError: baseline = (1.0, 1.0) benchmarks.append( Benchmark(benchmark, cfg, n, accTarg, baseline[0], baseline[1])) progress.remainingTicks(len(benchmarks)) #print LONGBAR #print "Fixed (no autotuning) scores:" #print SHORTBAR #for b in benchmarks: # progress.status("running fixed "+fmtCfg(b.cfg)) # b.runFixed() # b.printFixed() #score_fixed = geomean(map(Benchmark.scoreFixed, benchmarks)) #print SHORTBAR #print "Fixed Score (pbbenchmark v%s): %.2f" % (VERSION, geomean(map(Benchmark.scoreFixed, benchmarks))) #print LONGBAR #print print LONGBAR print "Tuned scores:" print SHORTBAR for b in benchmarks: progress.status("running tuned " + fmtCfg(b.cfg)) progress.status("autotuning") b.autotune() b.runTuned() b.printTuned() progress.tick() score_tuned = geomean(map(Benchmark.scoreTuned, benchmarks)) score_training_time = geomean(map(Benchmark.scoreTrainingTime, benchmarks)) print SHORTBAR print "Tuned Score (pbbenchmark v%s): %.2f" % (VERSION, score_tuned) print "Training Time Score (pbbenchmark v%s): %.2f" % (VERSION, score_training_time) print LONGBAR print if DEBUG: print LONGBAR print "Debug:" print SHORTBAR for b in benchmarks: b.printDebug() print LONGBAR print fd = open("./testdata/configs/baselines.csv.latest", "w") for b in benchmarks: print >> fd, "%s, %f, %f" % (b.benchmark, b.tuned_perf['average'], b.tuning_time) fd.close() if not os.path.isdir(LOGDIR): os.mkdir(LOGDIR) for b in benchmarks: writelog(expandLog(b.cfg), b.logEntry()) writelog( expandLog('scores.log'), { 'version': VERSION, 'score_fixed': -1, #score_fixed, 'score_tuned': score_tuned, 'score_training_time': score_training_time, 'hostname': socket.gethostname(), 'timestamp': TIMESTAMP, 'revision': REV, }) progress.status("done") progress.pop()
(options, args) = parser.parse_args() if options.heuristics: options.learning = True if options.learning: print "Learning of heuristics is ACTIVE" if options.heuristics: print "Using heuristics file: " + str(options.heuristics) else: print "Using only heuristics in the database" t1 = time.time() results, b = pbutil.loadAndCompileBenchmarks( "./scripts/smoketest.tests", args, testBenchmark, postfn=checkBenchmark, learning=options.learning, heuristicSetFileName=options.heuristics, noLearningList=check_exclude) t2 = time.time() passed = len(filter(lambda x: x.rv == 0, results)) total = len(results) print "%d of %d tests passed (took %.2fs)" % (passed, total, (t2 - t1)) sys.exit(min(total - passed, 124))
def main(): warnings.simplefilter('ignore', tunerwarnings.NewProgramCrash) warnings.simplefilter('ignore', tunerwarnings.SmallInputProgramCrash) warnings.simplefilter('ignore', tunerwarnings.TargetNotMet) warnings.simplefilter('ignore', tunerwarnings.NanAccuracy) #Parse input options from optparse import OptionParser parser = OptionParser(usage="usage: pbbenchmark [options]") parser.add_option("--learning", action="store_true", dest="learning", default=False, help="enable heuristics learning") parser.add_option("--heuristics", type="string", help="name of the file containing the set of heuristics to use. Automatically enables --learning", default=None) (options, args) = parser.parse_args() if options.heuristics: options.learning = True if options.learning: print "Learning of heuristics is ACTIVE" if options.heuristics: print "Using heuristics file: "+ str(options.heuristics) else: print "Using only heuristics in the database" progress.push() progress.status("compiling benchmarks") pbutil.chdirToPetabricksRoot() pbutil.compilePetabricks() global REV try: REV=pbutil.getRevision() except: pass r, lines = pbutil.loadAndCompileBenchmarks("./scripts/pbbenchmark.tests", searchterms=sys.argv[1:], learning=options.learning, heuristicSetFileName=options.heuristics) if filter(lambda x: x.rv!=0, r): print "compile failed" sys.exit(1) print print "All scores are relative performance to a baseline system." print "Higher is better." print baselines = dict() for line in csv.reader(open("./testdata/configs/baselines.csv")): if len(line)>=3: baselines[line[0]] = line[1:] benchmarks=[] for benchmark, cfg, n, accTarg in lines: try: baseline = baselines[benchmark] except KeyError: baseline = (1.0, 1.0) benchmarks.append(Benchmark(benchmark, cfg, n, accTarg, baseline[0], baseline[1])) progress.remainingTicks(len(benchmarks)) #print LONGBAR #print "Fixed (no autotuning) scores:" #print SHORTBAR #for b in benchmarks: # progress.status("running fixed "+fmtCfg(b.cfg)) # b.runFixed() # b.printFixed() #score_fixed = geomean(map(Benchmark.scoreFixed, benchmarks)) #print SHORTBAR #print "Fixed Score (pbbenchmark v%s): %.2f" % (VERSION, geomean(map(Benchmark.scoreFixed, benchmarks))) #print LONGBAR #print print LONGBAR print "Tuned scores:" print SHORTBAR for b in benchmarks: progress.status("running tuned "+fmtCfg(b.cfg)) progress.status("autotuning") b.autotune() b.runTuned() b.printTuned() progress.tick() score_tuned = geomean(map(Benchmark.scoreTuned, benchmarks)) score_training_time = geomean(map(Benchmark.scoreTrainingTime, benchmarks)) print SHORTBAR print "Tuned Score (pbbenchmark v%s): %.2f" % (VERSION, score_tuned) print "Training Time Score (pbbenchmark v%s): %.2f" % (VERSION, score_training_time) print LONGBAR print if DEBUG: print LONGBAR print "Debug:" print SHORTBAR for b in benchmarks: b.printDebug() print LONGBAR print fd = open("./testdata/configs/baselines.csv.latest", "w") for b in benchmarks: print >>fd, "%s, %f, %f" % (b.benchmark, b.tuned_perf['average'], b.tuning_time) fd.close() if not os.path.isdir(LOGDIR): os.mkdir(LOGDIR) for b in benchmarks: writelog(expandLog(b.cfg), b.logEntry()) writelog(expandLog('scores.log'), { 'version' : VERSION, 'score_fixed' : -1,#score_fixed, 'score_tuned' : score_tuned, 'score_training_time' : score_training_time, 'hostname' : socket.gethostname(), 'timestamp' : TIMESTAMP, 'revision' : REV, }) progress.status("done") progress.pop()
return False if diffFiles(outfile, outfile+".latest"): time.sleep(0.1) #try letting the filesystem settle down if diffFiles(outfile, outfile+".latest"): print "run FAILED (wrong output)" return False print "run PASSED" return True return test() if 'nocheck' in sys.argv[1:]: sys.argv[1:] = filter(lambda x: x!='nocheck', sys.argv[1:]) CHECK = False t1=time.time() results,b=pbutil.loadAndCompileBenchmarks("./scripts/smoketest.tests", sys.argv[1:], testBenchmark, postfn=checkBenchmark) t2=time.time() passed=len(filter(lambda x: x.rv==0, results)) total=len(results) print "%d of %d tests passed (took %.2fs)"%(passed,total,(t2-t1)) sys.exit(min(total-passed, 124))