def predict_proba(self, X): if self.estimator is None: raise NotImplementedError() # return self.estimator.predict_proba(X) decision = self.estimator.decision_function(X) if len(self.estimator.classes_) > 2: decision = _ovr_decision_function(decision < 0, decision, len(self.estimator.classes_)) return softmax(decision)
def predict_proba(self, X): if self.estimator is None: raise NotImplementedError() if self.loss in ["log", "modified_huber"]: return self.estimator.predict_proba(X) else: df = self.estimator.decision_function(X) return softmax(df)
def predict_proba(self, X): if self.estimator is None: raise NotImplementedError() df = self.estimator.decision_function(X) return softmax(df)