Example #1
0
    def read_config(self):
        config_path = self.config_path
        cfg_from_yaml_file(self.config_path, cfg)
        self.logger = common_utils.create_logger()
        self.demo_dataset = DemoDataset(
            dataset_cfg=cfg.DATA_CONFIG,
            class_names=cfg.CLASS_NAMES,
            training=False,
            root_path=Path(
                "/home/muzi2045/Documents/project/OpenPCDet/data/kitti/velodyne/000001.bin"
            ),
            ext='.bin')

        self.device = torch.device(
            "cuda" if torch.cuda.is_available() else "cpu")
        self.net = build_network(model_cfg=cfg.MODEL,
                                 num_class=len(cfg.CLASS_NAMES),
                                 dataset=self.demo_dataset)
        self.net.load_params_from_file(filename=self.model_path,
                                       logger=self.logger,
                                       to_cpu=True)
        self.net = self.net.to(self.device).eval()

        # nuscenes dataset
        lidar2imu_t = np.array([0.985793, 0.0, 1.84019])
        lidar2imu_r = Quaternion(
            [0.706749235, -0.01530099378, 0.0173974518, -0.7070846])
        self.lidar2imu = transform_matrix(lidar2imu_t,
                                          lidar2imu_r,
                                          inverse=True)
        self.imu2lidar = transform_matrix(lidar2imu_t,
                                          lidar2imu_r,
                                          inverse=False)
Example #2
0
def parse_config():
    parser = argparse.ArgumentParser(description='arg parser')
    parser.add_argument('--cfg_file', type=str, default='/home/syang/Data/data_object_velodyne/output/kitti_models/centernet_multihead/0124_single_head/centernet_multihead.yaml', help='specify the config for training')

    parser.add_argument('--batch_size', type=int, default=1, required=False, help='batch size for training')
    parser.add_argument('--workers', type=int, default=16, help='number of workers for dataloader')
    parser.add_argument('--extra_tag', type=str, default='0129_twostage_first_4', help='extra tag for this experiment')
    # os.path.abspath('..') + '/output/robosense_models/robosense_pointpillar/BResampl_LR001/ckpt/checkpoint_epoch_30.pth'
    parser.add_argument('--ckpt', type=str, default='/home/syang/Data/data_object_velodyne/output/kitti_models/centernet_multihead/0124_single_head/ckpt/checkpoint_epoch_80.pth', help='checkpoint to start from')
    parser.add_argument('--launcher', choices=['none', 'pytorch', 'slurm'], default='none')
    parser.add_argument('--tcp_port', type=int, default=18888, help='tcp port for distrbuted training')
    parser.add_argument('--local_rank', type=int, default=0, help='local rank for distributed training')
    parser.add_argument('--set', dest='set_cfgs', default=None, nargs=argparse.REMAINDER,
                        help='set extra config keys if needed')

    parser.add_argument('--max_waiting_mins', type=int, default=30, help='max waiting minutes')
    parser.add_argument('--start_epoch', type=int, default=0, help='')
    parser.add_argument('--eval_tag', type=str, default='default', help='eval tag for this experiment')
    parser.add_argument('--eval_all', action='store_true', default=False, help='whether to evaluate all checkpoints')
    parser.add_argument('--ckpt_dir', type=str, default=None, help='specify a ckpt directory to be evaluated if needed')
    parser.add_argument('--save_to_file', action='store_true', default=False, help='')

    args = parser.parse_args()

    cfg_from_yaml_file(args.cfg_file, cfg)
    cfg.TAG = Path(args.cfg_file).stem
    cfg.EXP_GROUP_PATH = '/'.join(args.cfg_file.split('/')[1:-1])  # remove 'cfgs' and 'xxxx.yaml'

    np.random.seed(1024)

    if args.set_cfgs is not None:
        cfg_from_list(args.set_cfgs, cfg)

    return args, cfg
Example #3
0
def parse_config():
    parser = argparse.ArgumentParser(description='arg parser')
    parser.add_argument(
        '--cfg_file',
        type=str,
        default='cfgs/kitti_models/second.yaml',
        help='specify the config for demo')  # 1. '--cfg_file'   #指定配置
    parser.add_argument('--data_path',
                        type=str,
                        default='demo_data',
                        help='specify the point cloud data file or directory'
                        )  # 2 . '--data_path'  #指定点云数据文件或目录
    parser.add_argument(
        '--ckpt', type=str, default=None,
        help='specify the pretrained model')  #  3. '--ckpt'  #指定预训练模型
    parser.add_argument(
        '--ext',
        type=str,
        default='.bin',
        help='specify the extension of your point cloud data file'
    )  # 4. '--ext'  #指定点云数据文件的扩展名

    args = parser.parse_args()

    cfg_from_yaml_file(args.cfg_file,
                       cfg)  # cfg的参数在tools/cfg/kitti_models/pv-rcnn.yaml

    return args, cfg  # cfg的参数在tools/cfg/kitti_models/pv-rcnn.yaml
Example #4
0
def parse_config():
    parser = argparse.ArgumentParser(description='arg parser')
    #设置模型参数
    parser.add_argument('--cfg_file',
                        type=str,
                        default='cfgs/kitti_models/second.yaml',
                        help='specify the config for demo')
    #设置数据路径参数
    parser.add_argument('--data_path',
                        type=str,
                        default='demo_data',
                        help='specify the point cloud data file or directory')
    #设置预训练模型,Check point 校验点 在系统运行中当出现查找数据请求时,
    #系统从数据库中找出这些数据并存入内存区,这样用户就可以对这些内存区数据进行修改等
    parser.add_argument('--ckpt',
                        type=str,
                        default=None,
                        help='specify the pretrained model')
    # extension 指定点云数据文件的扩展名
    parser.add_argument(
        '--ext',
        type=str,
        default='.bin',
        help='specify the extension of your point cloud data file')

    args = parser.parse_args()

    cfg_from_yaml_file(args.cfg_file, cfg)
    #arguments参数,configuration配制
    return args, cfg
Example #5
0
def parse_config():
    parser = argparse.ArgumentParser(description='arg parser')
    parser.add_argument('--cfg_file',
                        type=str,
                        default=None,
                        help='specify the config for training')
    parser.add_argument(
        '--data_path',
        type=str,
        default='demo_data',
        help='specify the dataset or point cloud data directory')
    parser.add_argument('--ckpt',
                        type=str,
                        default=None,
                        help='checkpoint to start from')
    parser.add_argument(
        '--ext',
        type=str,
        default='.bin',
        help='specify the extension of your point cloud data file')
    parser.add_argument('--save_video_path',
                        type=str,
                        default=None,
                        help='path to save the inference video')
    args = parser.parse_args()

    cfg_from_yaml_file(args.cfg_file, cfg)
    cfg.TAG = Path(args.cfg_file).stem
    cfg.EXP_GROUP_PATH = '/'.join(
        args.cfg_file.split('/')[1:-1])  # remove 'cfgs' and 'xxxx.yaml'
    np.random.seed(1024)

    return args, cfg
Example #6
0
def parse_config():
    parser = argparse.ArgumentParser(description='arg parser')
    parser.add_argument('--cfg_file',
                        type=str,
                        default='cfgs/nuscenes_models/cbgs_pp_multihead.yaml',
                        help='specify the config for demo')
    parser.add_argument('--data_path',
                        type=str,
                        default='/media/javier/HDD_linux/data/nuscenes',
                        help='specify the point cloud data file or directory')
    parser.add_argument('--ckpt',
                        type=str,
                        default=None,
                        help='specify the pretrained model')
    parser.add_argument(
        '--ext',
        type=str,
        default='.bin',
        help='specify the extension of your point cloud data file')
    parser.add_argument('--frames',
                        type=int,
                        default='6019',
                        help='specify the number of frames to use')

    args = parser.parse_args()

    cfg_from_yaml_file(args.cfg_file, cfg)

    return args, cfg
Example #7
0
def parse_config():
    parser = argparse.ArgumentParser(description='arg parser')
    parser.add_argument('--cfg_file',
                        type=str,
                        default='cfgs/kitti_models/second.yaml',
                        help='specify the config for demo')
    parser.add_argument('--data_path',
                        type=str,
                        default='demo_data',
                        help='specify the point cloud data file or directory')
    parser.add_argument('--ckpt',
                        type=str,
                        default=None,
                        help='specify the pretrained model')
    parser.add_argument(
        '--ext',
        type=str,
        default='.bin',
        help='specify the extension of your point cloud data file')

    args = parser.parse_args()

    cfg_from_yaml_file(args.cfg_file, cfg)

    return args, cfg
Example #8
0
def parse_config():
    parser = argparse.ArgumentParser(description='arg parser')
    parser.add_argument('--cfg_file', type=str, default=None, help='specify the config for training')

    parser.add_argument('--batch_size', type=int, default=None, required=False, help='batch size for training')
    parser.add_argument('--workers', type=int, default=4, help='number of workers for dataloader')
    parser.add_argument('--extra_tag', type=str, default='default', help='extra tag for this experiment')
    parser.add_argument('--ckpt', type=str, default=None, help='checkpoint to start from')
    parser.add_argument('--launcher', choices=['none', 'pytorch', 'slurm'], default='none')
    parser.add_argument('--tcp_port', type=int, default=18888, help='tcp port for distrbuted training')
    parser.add_argument('--local_rank', type=int, default=50, help='local rank for distributed training')
    parser.add_argument('--set', dest='set_cfgs', default=None, nargs=argparse.REMAINDER,
                        help='set extra config keys if needed')

    parser.add_argument('--max_waiting_mins', type=int, default=30, help='max waiting minutes')
    parser.add_argument('--start_epoch', type=int, default=0, help='')
    parser.add_argument('--eval_tag', type=str, default='default', help='eval tag for this experiment')
    parser.add_argument('--eval_all', action='store_true', default=False, help='whether to evaluate all checkpoints')
    parser.add_argument('--ckpt_dir', type=str, default=None, help='specify a ckpt directory to be evaluated if needed')
    parser.add_argument('--save_to_file', action='store_true', default=False, help='')

    args = parser.parse_args()

    cfg_from_yaml_file(args.cfg_file, cfg)
    cfg.TAG = Path(args.cfg_file).stem
    cfg.EXP_GROUP_PATH = '/'.join(args.cfg_file.split('/')[1:-1])  # remove 'cfgs' and 'xxxx.yaml'

    np.random.seed(1024)

    if args.set_cfgs is not None:
        cfg_from_list(args.set_cfgs, cfg)

    return args, cfg
Example #9
0
def parse_config():
    parser = argparse.ArgumentParser(description='arg parser')
    parser.add_argument('--cfg_file', type=str, default=None, help='specify the config for training')

    parser.add_argument('--batch_size', type=int, default=None, required=False, help='batch size for training')
    parser.add_argument('--epochs', type=int, default=None, required=False, help='number of epochs to train for')
    parser.add_argument('--workers', type=int, default=8, help='number of workers for dataloader')
    parser.add_argument('--extra_tag', type=str, default='default', help='extra tag for this experiment')
    parser.add_argument('--ckpt', type=str, default=None, help='checkpoint to start from')
    parser.add_argument('--pretrained_model', type=str, default=None, help='pretrained_model')
    parser.add_argument('--launcher', choices=['none', 'pytorch', 'slurm'], default='none')
    parser.add_argument('--tcp_port', type=int, default=18888, help='tcp port for distrbuted training')
    parser.add_argument('--sync_bn', action='store_true', default=False, help='whether to use sync bn')
    parser.add_argument('--fix_random_seed', action='store_true', default=False, help='')
    parser.add_argument('--ckpt_save_interval', type=int, default=1, help='number of training epochs')
    parser.add_argument('--local_rank', type=int, default=0, help='local rank for distributed training')
    parser.add_argument('--max_ckpt_save_num', type=int, default=30, help='max number of saved checkpoint')
    parser.add_argument('--merge_all_iters_to_one_epoch', action='store_true', default=False, help='')
    parser.add_argument('--set', dest='set_cfgs', default=None, nargs=argparse.REMAINDER,
                        help='set extra config keys if needed')

    parser.add_argument('--max_waiting_mins', type=int, default=0, help='max waiting minutes')
    parser.add_argument('--start_epoch', type=int, default=0, help='')
    parser.add_argument('--save_to_file', action='store_true', default=False, help='')

    args = parser.parse_args()

    cfg_from_yaml_file(args.cfg_file, cfg)
    cfg.TAG = Path(args.cfg_file).stem
    cfg.EXP_GROUP_PATH = '/'.join(args.cfg_file.split('/')[1:-1])  # remove 'cfgs' and 'xxxx.yaml'

    if args.set_cfgs is not None:
        cfg_from_list(args.set_cfgs, cfg)

    return args, cfg
Example #10
0
    def __init__(self, cfg_file, logger=False):
        self.logger = False
        if logger:
            self.logger = True
            logging.basicConfig(
                filename="../results/log2.txt",
                level=logging.INFO,
                format='%(levelname)s: %(asctime)s %(message)s',
                datefmt='%m/%d/%Y %I:%M:%S')

        cfg_from_yaml_file(cfg_file, cfg)
        self.model_dir = Path('../results')

        self.dataset = JrdbDataset(
            dataset_cfg=cfg.DATA_CONFIG,
            class_names=['Pedestrian'],
            root_path=None,
            training=False,
            logger=None,
        )

        self.num_frames = len(self.dataset.data_infos)
        print(self.num_frames)

        self.class_names = self.dataset.class_names
        self.easy_eval = True
Example #11
0
 def setup_model(self):
     cfg_from_yaml_file(self.detector_config, cfg)
     self.logger = common_utils.create_logger()
     self.dataset = DummyDataset(dataset_cfg=cfg.DATA_CONFIG,
                                 class_names=cfg.CLASS_NAMES)
     self.device = torch.device(
         "cuda" if torch.cuda.is_available() else "cpu")
     self.net = build_network(model_cfg=cfg.MODEL,
                              num_class=len(cfg.CLASS_NAMES),
                              dataset=self.dataset)
     self.net.load_params_from_file(filename=self.model_path,
                                    logger=self.logger,
                                    to_cpu=True)
     self.net = self.net.to(self.device).eval()
Example #12
0
def parse_config():
    parser = argparse.ArgumentParser(description='arg parser')
    parser.add_argument('--bag_file', type=str, default=None, help='specify the bag file to be inferenced')
    parser.add_argument('--cfg_file', type=str, default=None, help='specify the config for inference')
    parser.add_argument('--save_video', default=False, action='store_true')
    parser.add_argument('--save_path', default='../data/plusai/inference_result/', help='path to save the inference result')
    parser.add_argument('--ckpt', type=str, default=None, help='model checkpoint')
    args = parser.parse_args()

    cfg_from_yaml_file(args.cfg_file, cfg)
    cfg.TAG = Path(args.cfg_file).stem
    cfg.EXP_GROUP_PATH = '/'.join(args.cfg_file.split('/')[1:-1])  # remove 'cfgs' and 'xxxx.yaml'
    np.random.seed(1024)

    return args, cfg
Example #13
0
def parse_config():
    parser = argparse.ArgumentParser(description='arg parser')
    parser.add_argument(
        '--cfg_file',
        type=str,
        default=
        '/home/syang/Data/data_object_velodyne/output/kitti_models/onenet_twostage_0130/test/onenet_twostage_0130.yaml',
        help='specify the config for training')
    parser.add_argument(
        '--ckpt',
        type=str,
        default=
        '/home/syang/Data/data_object_velodyne/output/kitti_models/onenet_twostage_0130/test/ckpt/checkpoint_epoch_78.pth',
        help='checkpoint to start from')
    parser.add_argument('--show_heatmap',
                        action='store_true',
                        default=False,
                        help='')
    parser.add_argument('--batch_size',
                        type=int,
                        default=1,
                        required=False,
                        help='batch size for training')
    parser.add_argument('--workers',
                        type=int,
                        default=4,
                        help='number of workers for dataloader')
    parser.add_argument('--data_path',
                        type=str,
                        default='demo_data',
                        help='specify the point cloud data file or directory')
    parser.add_argument(
        '--ext',
        type=str,
        default='.bin',
        help='specify the extension of your point cloud data file')

    args = parser.parse_args()
    cfg_from_yaml_file(args.cfg_file, cfg)
    cfg.TAG = Path(args.cfg_file).stem
    cfg.EXP_GROUP_PATH = '/'.join(
        args.cfg_file.split('/')[1:-1])  # remove 'cfgs' and 'xxxx.yaml'

    np.random.seed(1024)

    return args, cfg
Example #14
0
def parse_config():
    parser = argparse.ArgumentParser(description='arg parser')
    parser.add_argument('--cfg_file', type=str, default=None, help='specify the config for training')
    parser.add_argument('--ckpt', type=str, default=None, help='checkpoint to start from')
    parser.add_argument('--data_path', type=str, default='demo_data',
                        help='specify the scene directory or val info pkl')
    parser.add_argument('--save_path', default='../data/plusai/inference_result/', help='path to save the inference result')
    parser.add_argument('--batch_size', type=int, default=1, required=False, help='batch size for training')
    parser.add_argument('--workers', type=int, default=4, help='number of workers for dataloader')
    args = parser.parse_args()

    cfg_from_yaml_file(args.cfg_file, cfg)
    cfg.TAG = Path(args.cfg_file).stem
    cfg.EXP_GROUP_PATH = '/'.join(args.cfg_file.split('/')[1:-1])  # remove 'cfgs' and 'xxxx.yaml'
    np.random.seed(1024)

    return args, cfg
    def __init__(self, input_dict):
        # pvrcnn cfg
        cfg_from_yaml_file(input_dict.cfg_file, cfg)

        # create logger
        log_dir = Path(str(input_dict.output_dir)) / 'log'
        log_dir.mkdir(parents=True, exist_ok=True)

        self.logger = common_utils.create_logger(
            log_dir /
            ('log_%s.txt' % datetime.datetime.now().strftime('%Y%m%d-%H%M%S')),
            rank=cfg.LOCAL_RANK)

        # build dataset and network
        self.demo_dataset = DemoDataset(  # dummy dataset for preprocess inputdata
            dataset_cfg=cfg.DATA_CONFIG,
            class_names=cfg.CLASS_NAMES,
            training=False,
            root_path=input_dict.dummy_cloud,
            ext='.bin',
            logger=self.logger)
        self.device = torch.device(
            "cuda" if torch.cuda.is_available() else "cpu")
        self.model = build_network(model_cfg=cfg.MODEL,
                                   num_class=len(cfg.CLASS_NAMES),
                                   dataset=self.demo_dataset)
        self.model.load_params_from_file(filename=input_dict.ckpt_file,
                                         logger=self.logger,
                                         to_cpu=self.device == "cpu")

        self.model.to(self.device)
        self.model.eval()
        self.score_threshold = input_dict.score_threashold

        # for ROS
        self.action_server = actionlib.SimpleActionServer(
            "excavator/lidar_perception/ros_pvrcnn_action",
            detector3dAction,
            execute_cb=self.execute_cb,
            auto_start=False)
        self.action_server.start()
        self.mk_pub = rospy.Publisher("ros_pvrcnn", MarkerArray, queue_size=1)
        self.cls_list = [String(cls) for cls in cfg.CLASS_NAMES]
Example #16
0
    def read_config(self):
        config_path = self.config_path
        cfg_from_yaml_file(self.config_path, cfg)
        self.logger = common_utils.create_logger()
        self.demo_dataset = DemoDataset(dataset_cfg=cfg.DATA_CONFIG,
                                        class_names=cfg.CLASS_NAMES,
                                        training=False,
                                        root_path=Path("/none"),
                                        ext='.bin')

        self.device = torch.device(
            "cuda" if torch.cuda.is_available() else "cpu")

        self.net = build_network(model_cfg=cfg.MODEL,
                                 num_class=len(cfg.CLASS_NAMES),
                                 dataset=self.demo_dataset)
        print("Model path: ", self.model_path)
        self.net.load_params_from_file(filename=self.model_path,
                                       logger=self.logger,
                                       to_cpu=True)
        self.net = self.net.to(self.device).eval()
Example #17
0
    def read_config(self):
        config_path = self.config_path
        cfg_from_yaml_file(self.config_path, cfg)
        self.logger = common_utils.create_logger()
        self.demo_dataset = DemoDataset(
            dataset_cfg=cfg.DATA_CONFIG,
            class_names=cfg.CLASS_NAMES,
            training=False,
            root_path=Path(
                "/home/muzi2045/Documents/project/OpenPCDet/data/kitti/velodyne/000001.bin"
            ),
            ext='.bin')

        self.device = torch.device(
            "cuda" if torch.cuda.is_available() else "cpu")
        self.net = build_network(model_cfg=cfg.MODEL,
                                 num_class=len(cfg.CLASS_NAMES),
                                 dataset=self.demo_dataset)
        self.net.load_params_from_file(filename=self.model_path,
                                       logger=self.logger,
                                       to_cpu=True)
        self.net = self.net.to(self.device).eval()
Example #18
0
def parse_config():
    parser = argparse.ArgumentParser(description='arg parser')
    parser.add_argument('--cfg_file',
                        type=str,
                        default='cfgs/kitti_models/second.yaml',
                        help='specify the config for demo')
    # parser.add_argument('--data_path', type=str, default='demo_data',
    #                     help='specify the point cloud data file or directory')
    parser.add_argument(
        '--data_root',
        type=str,
        default='demo_data',
        help='specify the root of calib, velodyne and image files')
    parser.add_argument('--file_number',
                        type=str,
                        default='000008',
                        help='specify file number to detect objects for')
    parser.add_argument('--ckpt',
                        type=str,
                        default=None,
                        help='specify the pretrained model')
    parser.add_argument(
        '--ext',
        type=str,
        default='.bin',
        help='specify the extension of your point cloud data file')
    # parser.add_argument('--ext')
    parser.add_argument(
        '--res',
        type=str,
        default="../results/3dod/vis/",
        help="specify the results folder of the detection result")

    args = parser.parse_args()

    cfg_from_yaml_file(args.cfg_file, cfg)

    return args, cfg
def parse_config():
    parser = argparse.ArgumentParser(description='arg parser')
    parser.add_argument('--cfg_file',
                        type=str,
                        default='cfgs/kitti_models/second.yaml',
                        help='specify the config for demo')
    parser.add_argument('--seq_path',
                        type=str,
                        default='demo_data',
                        help='specify the point cloud data sequence path')
    parser.add_argument('--ckpt',
                        type=str,
                        default=None,
                        help='specify the pretrained model')
    parser.add_argument(
        '--ext',
        type=str,
        default='.bin',
        help='specify the extension of your point cloud data file')
    parser.add_argument(
        '--output_dir',
        type=str,
        default='',
        help='The path to save predictions and output log files for tracking')
    parser.add_argument(
        '--saved_pred',
        type=str,
        default='',
        help=
        'The path to existing saved predictions and output log files for visualizing'
    )

    args = parser.parse_args()

    cfg_from_yaml_file(args.cfg_file, cfg)

    return args, cfg
def parse_config():
    parser = argparse.ArgumentParser(description='arg parser')
    parser.add_argument('--cfg_file',
                        type=str,
                        default='cfgs/kitti_models/second.yaml',
                        help='specify the config for demo')
    parser.add_argument('--data_path',
                        type=str,
                        default='demo_data',
                        help='specify the point cloud data file or directory')
    parser.add_argument('--ckpt',
                        type=str,
                        default=None,
                        help='specify the pretrained model')
    parser.add_argument(
        '--ext',
        type=str,
        default='.bin',
        help='specify the extension of your point cloud data file')
    parser.add_argument('--vis',
                        type=bool,
                        default=False,
                        help='visualize detection results')
    parser.add_argument('--point',
                        type=bool,
                        default=False,
                        help='save point prediction results')
    parser.add_argument('--save_gt',
                        type=bool,
                        default=False,
                        help='save point ground truth labels')

    args = parser.parse_args()

    cfg_from_yaml_file(args.cfg_file, cfg)

    return args, cfg
Example #21
0
    def read_config(self):
        print(self.config_path)
        config_path = self.config_path
        cfg_from_yaml_file(self.config_path, cfg)
        self.logger = common_utils.create_logger()
        self.demo_datasets = DemoDataset(
            dataset_cfg=cfg.DATA_CONFIG,
            class_names=cfg.CLASS_NAMES,
            training=False,
            root_path=Path(
                '/home/syang/Data/RS_datasets/datasets/ruby119_longzhudadao_1200423181920/npy/ruby119_longzhudadao_1200423181920_755.npy'
            ),
            ext='.npy')

        self.device = torch.device(
            "cuda" if torch.cuda.is_available() else "cpu")
        print(self.device)
        self.net = build_network(model_cfg=cfg.MODEL,
                                 num_class=len(cfg.CLASS_NAMES),
                                 dataset=self.demo_datasets)
        self.net.load_params_from_file(filename=self.model_path,
                                       logger=self.logger,
                                       to_cpu=True)
        self.net = self.net.to(self.device).eval()
Example #22
0
    model_path  = 'cfgs/kitti_models/pointpillar_7728.pth'
    
    config_path = 'cfgs/kitti_models/pp_multihead.yaml'
    model_path  = 'cfgs/kitti_models/pp_multihead_nds5823.pth'
    '''
    config_path = 'cfgs/kitti_models/second.yaml'
    model_path = 'cfgs/kitti_models/second_7862.pth'

    movelidarcenter = 0  #69.12/2
    threshold = 0.4

    proc_1 = Processor_ROS(config_path, model_path)

    proc_1.initialize()

    cfg_from_yaml_file(config_path, cfg)
    '''    
    rospy.init_node('centerpoint_ros_node')
    sub_lidar_topic = [ "/velodyne_points", 
                        "/carla/ego_vehicle/lidar/lidar1/point_cloud",
                        "/kitti_player/hdl64e", 
                        "/lidar_protector/merged_cloud", 
                        "/merged_cloud",
                        "/lidar_top", 
                        "/roi_pclouds",
                        "/livox/lidar",
                        "/SimOneSM_PointCloud_0"]

    
    
    
Example #23
0
                bag_frame_list = os.listdir(os.path.join(data_path, cur_bag_name, 'pointcloud'))
                bag_frame_list.sort()
            f.write(os.path.join(bag_name, 'pointcloud', bag_frame_list[int(pointcloud_idx[:-4]) + 1]) + '\n')
        f.close()


if __name__ == '__main__':
    parser = argparse.ArgumentParser()
    parser.add_argument('--data_path', help='directory to data path which should contains bag and label')
    parser.add_argument('--lidar_topic', default='/unified/lidar_points')
    parser.add_argument('--odom_topic', default='/navsat/odom')
    parser.add_argument('--cfg_file', type=str, default='/home/jingsen/workspace/OpenPCDet/tools/cfgs/livox_models/pv_rcnn_multiframe.yaml')
    parser.add_argument('--visualize', action='store_true', default=False, help='visualize the multi-frame point cloud')
    parser.add_argument('--num_workers', default=6, help='num workers to process label data')
    args = parser.parse_args()

    cfg_from_yaml_file(args.cfg_file, cfg)

    log_file = os.path.join(args.data_path, 'data_preprocessing_log.txt')
    logger = create_logger(log_file, rank=0)

    # logger.info('=== Start extract point-cloud and annotations from origin bag and label files, this will take a long time ... ===')
    # preprocess_dataset()

    logger.info('\n\n=== Start process multiframe dataset ... ===')
    prepare_multiframe_dataset()

    # logger.info('\n\n=== Start get image sets ... ===')
    # get_images_sets()

    print('log file saved in {}'.format(log_file))
Example #24
0
def parse_config():
    parser = argparse.ArgumentParser(description='KITTI Demo Video')
    parser.add_argument('--maxdisp',
                        type=int,
                        default=192,
                        help='maxium disparity')
    parser.add_argument('--loss_weights',
                        type=float,
                        nargs='+',
                        default=[0.25, 0.5, 1., 1.])
    parser.add_argument('--max_disparity', type=int, default=192)
    parser.add_argument('--maxdisplist',
                        type=int,
                        nargs='+',
                        default=[12, 3, 3])
    parser.add_argument('--datatype', default='2015', help='datapath')
    parser.add_argument('--datapath',
                        default='data/kitti/training',
                        help='datapath')
    parser.add_argument('--epochs',
                        type=int,
                        default=300,
                        help='number of epochs to train')
    parser.add_argument('--train_bsize',
                        type=int,
                        default=6,
                        help='batch size for training (default: 6)')
    parser.add_argument('--test_bsize',
                        type=int,
                        default=8,
                        help='batch size for testing (default: 8)')
    parser.add_argument('--save_path',
                        type=str,
                        default='results/pseudoLidar/',
                        help='the path of saving checkpoints and log')
    parser.add_argument('--resume', type=str, default=None, help='resume path')
    parser.add_argument('--lr', type=float, default=5e-4, help='learning rate')
    parser.add_argument('--with_spn',
                        action='store_true',
                        help='with spn network or not')
    parser.add_argument('--print_freq',
                        type=int,
                        default=5,
                        help='print frequence')
    parser.add_argument('--init_channels',
                        type=int,
                        default=1,
                        help='initial channels for 2d feature extractor')
    parser.add_argument('--nblocks',
                        type=int,
                        default=2,
                        help='number of layers in each stage')
    parser.add_argument(
        '--channels_3d',
        type=int,
        default=4,
        help='number of initial channels 3d feature extractor ')
    parser.add_argument('--layers_3d',
                        type=int,
                        default=4,
                        help='number of initial layers in 3d network')
    parser.add_argument('--growth_rate',
                        type=int,
                        nargs='+',
                        default=[4, 1, 1],
                        help='growth rate in the 3d network')
    parser.add_argument('--spn_init_channels',
                        type=int,
                        default=8,
                        help='initial channels for spnet')
    parser.add_argument('--start_epoch_for_spn', type=int, default=121)
    parser.add_argument(
        '--pretrained',
        type=str,
        default='configs/checkpoint/kitti2015_ck/checkpoint.tar',
        help='pretrained model path')
    parser.add_argument('--split_file', type=str, default=None)
    parser.add_argument('--evaluate', action='store_true')
    parser.add_argument('--max_high', type=int, default=1)
    parser.add_argument('--cfg_file',
                        type=str,
                        default=paper.cfg,
                        help='specify the config for demo')
    parser.add_argument('--data_path', type=str, default='data/kitti/training')
    parser.add_argument('--ckpt',
                        type=str,
                        default=paper.model,
                        help='specify the pretrained model')

    args = parser.parse_args()
    cfg_from_yaml_file(args.cfg_file, cfg)

    return args, cfg
Example #25
0
def parse_config():
    parser = argparse.ArgumentParser(description='arg parser')
    parser.add_argument('--cfg_file',
                        type=str,
                        default=None,
                        help='specify the config for training')

    parser.add_argument('--batch_size',
                        type=int,
                        default=None,
                        required=False,
                        help='batch size for training')
    parser.add_argument('--epochs',
                        type=int,
                        default=None,
                        required=False,
                        help='number of epochs to train for')
    parser.add_argument('--workers',
                        type=int,
                        default=8,
                        help='number of workers for dataloader')
    parser.add_argument('--extra_tag',
                        type=str,
                        default='default',
                        help='extra tag for this experiment')
    parser.add_argument('--ckpt',
                        type=str,
                        default=None,
                        help='checkpoint to start from')
    parser.add_argument('--pretrained_model',
                        type=str,
                        default=None,
                        help='pretrained_model')
    parser.add_argument('--launcher',
                        choices=['none', 'pytorch', 'slurm'],
                        default='none')
    parser.add_argument('--tcp_port',
                        type=int,
                        default=18888,
                        help='tcp port for distrbuted training')
    parser.add_argument('--sync_bn',
                        action='store_true',
                        default=False,
                        help='whether to use sync bn')
    parser.add_argument('--fix_random_seed',
                        action='store_true',
                        default=False,
                        help='')
    parser.add_argument('--ckpt_save_interval',
                        type=int,
                        default=1,
                        help='number of training epochs')
    parser.add_argument('--local_rank',
                        type=int,
                        default=0,
                        help='local rank for distributed training')
    parser.add_argument('--max_ckpt_save_num',
                        type=int,
                        default=30,
                        help='max number of saved checkpoint')
    parser.add_argument('--merge_all_iters_to_one_epoch',
                        action='store_true',
                        default=False,
                        help='')
    parser.add_argument('--set',
                        dest='set_cfgs',
                        default=None,
                        nargs=argparse.REMAINDER,
                        help='set extra config keys if needed')

    parser.add_argument('--max_waiting_mins',
                        type=int,
                        default=0,
                        help='max waiting minutes')
    parser.add_argument('--start_epoch', type=int, default=0, help='')
    parser.add_argument('--save_to_file',
                        action='store_true',
                        default=False,
                        help='')
    parser.add_argument('--adv',
                        action='store_true',
                        default=False,
                        help='adv defense or not')
    parser.add_argument('--norm', type=str, default='inf', help='norm type')
    parser.add_argument('--epsilon',
                        type=float,
                        default=0.01,
                        help='epsilon value')
    parser.add_argument('--rec_type',
                        type=str,
                        default='both',
                        help='both: attack to points and reflectance'
                        'points: attack to points only'
                        'reflectance: attack to reflectance only')
    parser.add_argument('--iterations',
                        type=int,
                        default=1,
                        help='iterations of different method')
    parser.add_argument(
        '--pgd',
        type=bool,
        default=False,
        help=
        'pgd adversarial type, when pgd is True, momentum should be False and iterations should be 10'
    )
    parser.add_argument(
        '--momentum',
        type=bool,
        default=False,
        help=
        'adversarial type momentum, when momentum is True, pgd should be False and iterations should be 10'
    )
    parser.add_argument('--cfg_root_dir',
                        type=str,
                        default='',
                        help='model and relative informations save dir')
    args = parser.parse_args()

    cfg_from_yaml_file(args.cfg_file, cfg)
    cfg.TAG = Path(args.cfg_file).stem
    cfg.EXP_GROUP_PATH = '/'.join(
        args.cfg_file.split('/')[1:-1])  # remove 'cfgs' and 'xxxx.yaml'

    if args.set_cfgs is not None:
        cfg_from_list(args.set_cfgs, cfg)

    return args, cfg
Example #26
0
    # with open(test_filename, 'wb') as f:
    #     pickle.dump(kitti_infos_test, f)
    # print('Kitti info test file is saved to %s' % test_filename)

    print('---------------Start create groundtruth database for data augmentation---------------')
    if not cfg.DATA_CONFIG.TS_DATA:
        dataset.set_split(train_split)
        dataset.create_groundtruth_database(train_filename, split=train_split)

    print('---------------Data preparation Done---------------')


if __name__ == '__main__':
    if sys.argv.__len__() > 1 and sys.argv[1] == 'create_kitti_infos':
        cfg_file = sys.argv[2]
        cfg_from_yaml_file(cfg_file, cfg)

        if not cfg.DATA_CONFIG.TS_DATA:
            data_path = cfg.ROOT_DIR / 'data' / 'kitti'
            save_path = cfg.ROOT_DIR / 'data' / 'kitti'
        else:
            data_path = cfg.ROOT_DIR / 'ts_data'
            save_path = cfg.ROOT_DIR / 'ts_data'
        create_kitti_infos(
            data_path=data_path,
            save_path=save_path
        )
    else:
        A = KittiDataset(root_path='data/kitti', class_names=cfg.CLASS_NAMES, split='train', training=True)
        import pdb
        pdb.set_trace()
Example #27
0
from pcdet.datasets.JRDB.jrdb_dataset import JrdbDataset
from pcdet.datasets.kitti.kitti_dataset import KittiDataset

from pcdet.config import cfg, cfg_from_list, cfg_from_yaml_file, log_config_to_file
from pathlib import Path

import pdb
import numpy as np

# root_path = Path('data/jrdb')

cfg_from_yaml_file('cfgs/kitti_models/pointrcnn_test.yaml', cfg)

dataset = JrdbDataset(
    dataset_cfg=cfg.DATA_CONFIG,
    class_names=['Pedestrian'],
    root_path=None,
    training=True,
    logger=None,
)

dataset.set_split('train')
train_filename = (Path(__file__).resolve() / '../../'
                  ).resolve() / 'data' / 'jrdb_temp' / ('jrdb_infos_train.pkl')

dataset.create_groundtruth_database(train_filename, split='train')

# cfg_from_yaml_file('cfgs/kitti_models/pointrcnn.yaml', cfg)

# dataset = KittiDataset(
#         dataset_cfg=cfg.DATA_CONFIG,
Example #28
0
# These locations are where the model weights and other misc files are stored.
MODEL_CFG_PATH = '/code/submission/OpenPCDet/tools/cfgs/waymo_models/pv_rcnn.yaml'
MODEL_WEIGHTS = '/code/submission/lib/wod_latency_submission/WAYMO_MODEL_WEIGHTS.pth'

# The names of the lidars and input fields that users might want to use for
# detection.
LIDAR_NAMES = ['TOP', 'REAR', 'FRONT', 'SIDE_LEFT', 'SIDE_RIGHT']
LIDAR_FIELD = 'RANGE_IMAGE_FIRST_RETURN'

# The data fields requested from the evaluation script should be specified in
# this field in the module.
DATA_FIELDS = [lidar_name + '_' + LIDAR_FIELD for lidar_name in LIDAR_NAMES]

# Global variables that hold the models and configurations.
model_cfg = cfg_from_yaml_file(MODEL_CFG_PATH, cfg)
logger = common_utils.create_logger()
dataset_processor = DatasetTemplate(dataset_cfg=model_cfg.DATA_CONFIG,
                                    class_names=model_cfg.CLASS_NAMES,
                                    training=False,
                                    root_path=None,
                                    logger=logger)
model = None


def initialize_model():
    """Method that will be called by the evaluation script to load the model and weights.
  """
    global model
    model = build_network(model_cfg=model_cfg.MODEL,
                          num_class=len(model_cfg.CLASS_NAMES),
Example #29
0
def parse_config():
    parser = argparse.ArgumentParser(description='arg parser')
    parser.add_argument('--cfg_file',
                        type=str,
                        default=None,
                        help='specify the config for training')

    parser.add_argument('--data_dir', type=str, default=None)
    parser.add_argument('--batch_size',
                        type=int,
                        default=16,
                        required=False,
                        help='batch size for training')
    parser.add_argument('--epochs',
                        type=int,
                        default=80,
                        required=False,
                        help='number of epochs to train for')
    parser.add_argument('--workers',
                        type=int,
                        default=4,
                        help='number of workers for dataloader')
    parser.add_argument('--extra_tag',
                        type=str,
                        default='default',
                        help='extra tag for this experiment')
    parser.add_argument('--ckpt',
                        type=str,
                        default=None,
                        help='checkpoint to start from')
    parser.add_argument('--pretrained_model',
                        type=str,
                        default=None,
                        help='pretrained_model')
    parser.add_argument('--launcher',
                        choices=['none', 'pytorch', 'slurm'],
                        default='none')
    parser.add_argument('--federated',
                        choices=['none', 'sync', 'async'],
                        default='none')  #NOTE: for federated learning
    parser.add_argument('--tcp_port',
                        type=int,
                        default=18888,
                        help='tcp port for distributed training')
    parser.add_argument('--sync_bn',
                        action='store_true',
                        default=False,
                        help='whether to use sync bn')
    parser.add_argument('--fix_random_seed',
                        action='store_true',
                        default=False,
                        help='whether to use sync bn')
    parser.add_argument('--ckpt_save_interval',
                        type=int,
                        default=2,
                        help='number of training epochs')
    parser.add_argument('--local_rank',
                        type=int,
                        default=0,
                        help='local rank for distributed training')
    parser.add_argument('--max_ckpt_save_num',
                        type=int,
                        default=30,
                        help='max number of saved checkpoint')
    parser.add_argument('--set',
                        dest='set_cfgs',
                        default=None,
                        nargs=argparse.REMAINDER,
                        help='set extra config keys if needed')

    args = parser.parse_args()

    cfg_from_yaml_file(args.cfg_file, cfg)
    cfg.TAG = Path(args.cfg_file).stem
    if args.set_cfgs is not None:
        cfg_from_list(args.set_cfgs, cfg)

    return args, cfg