Example #1
0
        def generate_single_sample_dict(batch_index, box_dict):
            pred_scores = box_dict['pred_scores'].cpu().numpy()
            pred_boxes = box_dict['pred_boxes'].cpu().numpy()
            pred_labels = box_dict['pred_labels'].cpu().numpy()
            pred_dict = get_template_prediction(pred_scores.shape[0])
            if pred_scores.shape[0] == 0:
                return pred_dict

            calib = batch_dict['calib'][batch_index]
            image_shape = batch_dict['image_shape'][batch_index]
            pred_boxes_camera = box_utils.boxes3d_lidar_to_kitti_camera(pred_boxes, calib)
            pred_boxes_img = box_utils.boxes3d_kitti_camera_to_imageboxes(
                pred_boxes_camera, calib, image_shape=image_shape
            )

            pred_dict['name'] = np.array(class_names)[pred_labels - 1]      # 这里是 label - 1 !!
            pred_dict['alpha'] = -np.arctan2(-pred_boxes[:, 1], pred_boxes[:, 0]) + pred_boxes_camera[:, 6]
            pred_dict['bbox'] = pred_boxes_img
            pred_dict['dimensions'] = pred_boxes_camera[:, 3:6]
            pred_dict['location'] = pred_boxes_camera[:, 0:3]
            pred_dict['rotation_y'] = pred_boxes_camera[:, 6]
            pred_dict['score'] = pred_scores
            pred_dict['boxes_lidar'] = pred_boxes

            return pred_dict
Example #2
0
    def run(self, points, calib, frame):
        t_t = time.time()
        num_features = 4  # X,Y,Z,intensity
        self.points = points.reshape([-1, num_features])

        frame = 0
        timestamps = np.empty((len(self.points), 1))
        timestamps[:] = frame

        self.points = np.append(self.points, timestamps, axis=1)
        self.points[:, 0] += move_lidar_center

        input_dict = {
            'points': self.points,
            'frame_id': frame,
        }

        data_dict = self.demo_dataset.prepare_data(data_dict=input_dict)
        data_dict = self.demo_dataset.collate_batch([data_dict])
        load_data_to_gpu(data_dict)

        torch.cuda.synchronize()
        t = time.time()

        pred_dicts, _ = self.net.forward(data_dict)

        torch.cuda.synchronize()
        inference_time = time.time() - t
        inference_time_list.append(inference_time)
        mean_inference_time = sum(inference_time_list) / len(
            inference_time_list)

        boxes_lidar = pred_dicts[0]["pred_boxes"].detach().cpu().numpy()
        scores = pred_dicts[0]["pred_scores"].detach().cpu().numpy()
        types = pred_dicts[0]["pred_labels"].detach().cpu().numpy()

        pred_boxes = np.copy(boxes_lidar)
        pred_dict = self.get_template_prediction(scores.shape[0])
        if scores.shape[0] == 0:
            return pred_dict

        pred_boxes_camera = box_utils.boxes3d_lidar_to_kitti_camera(
            pred_boxes, calib)
        pred_boxes_img = box_utils.boxes3d_kitti_camera_to_imageboxes(
            pred_boxes_camera, calib, image_shape=image_shape)

        pred_dict['name'] = np.array(cfg.CLASS_NAMES)[types - 1]
        pred_dict['alpha'] = -np.arctan2(
            -pred_boxes[:, 1], pred_boxes[:, 0]) + pred_boxes_camera[:, 6]
        pred_dict['bbox'] = pred_boxes_img
        pred_dict['dimensions'] = pred_boxes_camera[:, 3:6]
        pred_dict['location'] = pred_boxes_camera[:, 0:3]
        pred_dict['rotation_y'] = pred_boxes_camera[:, 6]
        pred_dict['score'] = scores
        pred_dict['boxes_lidar'] = pred_boxes

        return scores, boxes_lidar, types, pred_dict
Example #3
0
    def run(self, points, calib, image_shape):
        t_t = time.time()
        print(f"input points shape: {points.shape}")
        num_features = 4
        self.points = points.reshape([-1, num_features])
        #print("points", self.points)

        timestamps = np.zeros((len(self.points), 1))
        self.points = np.append(self.points, timestamps, axis=1)
        self.points[:, 0] += movelidarcenter
        #print("points2", self.points)

        input_dict = {
            'points': self.points,
            'frame_id': 0,
        }

        data_dict = self.demo_dataset.prepare_data(data_dict=input_dict)
        data_dict = self.demo_dataset.collate_batch([data_dict])
        load_data_to_gpu(data_dict)

        torch.cuda.synchronize()
        t = time.time()

        pred_dicts, _ = self.net.forward(data_dict)

        torch.cuda.synchronize()
        print(f"inference time: {time.time() - t}")

        boxes_lidar = pred_dicts[0]["pred_boxes"].detach().cpu().numpy()
        scores = pred_dicts[0]["pred_scores"].detach().cpu().numpy()
        types = pred_dicts[0]["pred_labels"].detach().cpu().numpy()

        # print(f" pred boxes: { boxes_lidar }")
        # print(f" pred_scores: { scores }")
        # print(f" pred_labels: { types }")

        pred_boxes = boxes_lidar
        pred_dict = self.get_template_prediction(scores.shape[0])
        if scores.shape[0] == 0:
            return pred_dict

        #calib = get_calib(sample_idx)
        #P2 = np.concatenate([calib.P2, np.array([[0., 0., 0., 1.]])], axis=0)
        #R0_4x4 = np.zeros([4, 4], dtype=calib.R0.dtype)
        #R0_4x4[3, 3] = 1.
        #R0_4x4[:3, :3] = calib.R0
        #V2C_4x4 = np.concatenate([calib.V2C, np.array([[0., 0., 0., 1.]])], axis=0)
        #calib = {'P2': P2, 'R0_rect': R0_4x4, 'Tr_velo_to_cam': V2C_4x4}
        #calib = input_dict['calib'][batch_index]

        #image_shape = input_dict['image_shape'][batch_index]
        pred_boxes_camera = box_utils.boxes3d_lidar_to_kitti_camera(
            pred_boxes, calib)
        pred_boxes_img = box_utils.boxes3d_kitti_camera_to_imageboxes(
            pred_boxes_camera, calib, image_shape=image_shape)

        pred_dict['name'] = np.array(cfg.CLASS_NAMES)[types - 1]
        pred_dict['alpha'] = -np.arctan2(
            -pred_boxes[:, 1], pred_boxes[:, 0]) + pred_boxes_camera[:, 6]
        pred_dict['bbox'] = pred_boxes_img
        pred_dict['dimensions'] = pred_boxes_camera[:, 3:6]
        pred_dict['location'] = pred_boxes_camera[:, 0:3]
        pred_dict['rotation_y'] = pred_boxes_camera[:, 6]
        pred_dict['score'] = scores
        pred_dict['boxes_lidar'] = pred_boxes

        return pred_dict