Example #1
0
def pcl_from_np_single(xyz, rgb=None, intensity=None, normal=None):
    """accept np.ndarray N*C
    intensity can have channel dimension or not."""
    ### to desired shape and scale
    assert xyz.shape[1] == 3
    if rgb is not None:
        assert rgb.shape[1] == 3
        if rgb.max() <= 1:
            rgb = rgb * 255
    if intensity is not None:
        if intensity.ndim == 1:
            intensity = intensity.reshape(-1, 1)
        assert intensity.shape[1] == 3
        if intensity.max() <= 1:
            intensity = intensity * 255
    if normal is not None:
        assert normal.shape[1] == 3

    ### construct pcl objects
    if rgb is not None:
        xyz_rgb = np.concatenate((xyz, rgb), axis=1)
        cloud = pcl.create_xyzrgb(xyz_rgb)
    elif intensity is not None:
        xyz_inten = np.concatenate((xyz, intensity), axis=1)
        cloud = pcl.create_xyzi(xyz_inten)
    else:
        cloud = pcl.create_xyz(xyz)

    if normal is not None:
        cloud_nm = pcl.create_normal(normal)
        cloud = cloud.append_fields(cloud_nm)

    return cloud
Example #2
0
    def test_color_handlers(self):
        viewer = pcl.Visualizer()

        cloud = pcl.PointCloud(np.random.rand(100, 4).astype('f4'))
        viewer.addPointCloud(cloud, field="y", id="cloud1")

        cloud = pcl.PointCloud(np.random.rand(100, 4).astype('f4'))
        viewer.addPointCloud(cloud, color=[0.8, 0.2, 0], id="cloud2")

        cloud = pcl.PointCloud(np.random.rand(100, 4).astype('f4'))
        viewer.addPointCloud(
            cloud,
            color_handler=lambda: np.random.rand(100, 4) * 255,
            id="cloud3")

        cloud = np.random.rand(100, 4).astype('f4')
        cloud[:, 3] *= 20  # create label fields
        cloud = pcl.create_xyzl(cloud)
        viewer.addPointCloud(cloud, field="label", id="cloud4")

        cloud = np.random.rand(100, 6).astype('f4')
        cloud[:, 3:6] *= 256  # create rgb fields
        cloud = pcl.create_xyzrgb(cloud)
        viewer.addPointCloud(cloud, field="rgb", id="cloud5")

        cloud = np.random.rand(100, 7).astype('f4')
        cloud[:, 3:7] *= 256  # create rgb fields
        cloud = pcl.create_xyzrgba(cloud)
        viewer.addPointCloud(cloud, field="rgba", id="cloud6")

        viewer.spinOnce(time=2000)
        viewer.close()
Example #3
0
    def test_add_normal(self):
        viewer = pcl.Visualizer()

        cloud_data = np.random.rand(100, 6)
        cloud_data[:, 3:] = np.clip(cloud_data[:, 3:] * 128 + 128, 0, 256)
        cloud = pcl.create_xyzrgb(cloud_data)
        normals = pcl.create_normal(np.random.rand(100, 4))
        viewer.addPointCloud(cloud)
        viewer.addPointCloudNormals(cloud, normals, level=2, scale=0.1, id="cloudn")

        viewer.spinOnce(time=2000)
        viewer.close()
Example #4
0
def visualize_pcl(xyz,
                  rgb=None,
                  intensity=None,
                  normal=None,
                  filename=None,
                  single_batch=False,
                  tag=''):
    """Inputs are tensors of shape B*C*N
    """
    ## 1. tensor to np array
    B = xyz.shape[0]
    xyz_np = xyz.cpu().numpy().swapaxes(1, 2)
    if rgb is not None:
        rgb_np = rgb.cpu().numpy().swapaxes(1, 2) * 255
        xyz_rgb = np.concatenate((xyz_np, rgb_np), axis=2)
    elif intensity is not None:
        intensity_np = intensity.cpu().numpy().swapaxes(1, 2)
        xyz_inten = np.concatenate((xyz_np, intensity_np), axis=2)

    if normal is not None:
        normal_np = normal.cpu().numpy().swapaxes(1, 2)

    ## 2. np array to pcl cloud objects
    ## 3. create visualize window
    for ib in range(B):
        if rgb is not None:
            cloud = pcl.create_xyzrgb(xyz_rgb[ib])
        elif intensity is not None:
            cloud = pcl.create_xyzi(xyz_inten[ib])
        else:
            cloud = pcl.create_xyz(xyz_np[ib])

        if normal is not None:
            cloud_nm = pcl.create_normal(normal_np[ib])
            cloud = cloud.append_fields(cloud_nm)

        # print(cloud.to_ndarray())

        if filename is None:
            vis = pcl.Visualizer()
            if normal is not None:
                vis.addPointCloudNormals(cloud, cloud_nm)
            else:
                vis.addPointCloud(cloud)
            vis.addCoordinateSystem()
            vis.spin()
        else:
            if single_batch:
                pcl.io.save_pcd('{}{}.pcd'.format(filename, tag), cloud)
                # if normal is not None:
                #     pcl.io.save_pcd('{}{}_normal.pcd'.format(filename, tag), cloud_nm)
            else:
                pcl.io.save_pcd('{}{}_{}.pcd'.format(filename, tag, ib), cloud)
Example #5
0
def pcl_xyzi2xyzrgb(cloud):
    array = cloud.to_ndarray()

    x = np.array([arr[0] for arr in array])
    y = np.array([arr[1] for arr in array])
    z = np.array([arr[2] for arr in array])

    inten = np.array([arr[3] for arr in array])
    # print(inten.max())
    # print(inten.min())
    r, g, b = rgbmap(inten)

    xyzrgb = np.stack([x, y, z, r, g, b], axis=-1)
    # print(xyzrgb.shape)
    cloudrgb = pcl.create_xyzrgb(xyzrgb)
    return cloudrgb
Example #6
0
    def test_creators(self):
        cloud = pcl.create_xyz([[1,2,3], [4,5,6]])
        assert np.all(cloud.xyz == np.array([[1,2,3], [4,5,6]]))
        assert cloud.ptype == "XYZ"

        cloud = pcl.create_xyzrgb([[1,2,3,1,2,3], [4,5,6,4,5,6]])
        assert np.all(cloud.xyz == np.array([[1,2,3], [4,5,6]]))
        assert cloud.ptype == "XYZRGB"

        cloud = pcl.create_xyzrgba([[1,2,3,1,2,3,1], [4,5,6,4,5,6,4]])
        assert np.all(cloud.xyz == np.array([[1,2,3], [4,5,6]]))
        assert cloud.ptype == "XYZRGBA"

        cloud = pcl.create_normal([[1,2,3,3], [4,5,6,6]])
        assert np.all(cloud.normal == np.array([[1,2,3], [4,5,6]]))
        assert cloud.ptype == "NORMAL"

        cloud = pcl.create_normal([[1,2,3], [4,5,6]])
        assert np.all(cloud.normal == np.array([[1,2,3], [4,5,6]]))
        assert np.all(cloud['curvature'] == 0)
        assert cloud.ptype == "NORMAL"
Example #7
0
    def test_3d_semantic(self):
        seq = "2013_05_28_drive_0000_sync"
        idx = selection or random.randint(0, len(self.oloader))
        cloud = self.oloader.lidar_data((seq, idx), names="velo", bypass=True)
        pose = self.oloader.pose((seq, idx), bypass=True)
        calib = self.oloader.calibration_data((seq, idx))
        cloud = calib.transform_points(cloud[:, :3],
                                       frame_to="pose",
                                       frame_from="velo")
        cloud = cloud.dot(pose.orientation.as_matrix().T) + pose.position

        labels = np.load(
            os.path.join(kitti360_location, "data_3d_semantics", seq,
                         "indexed", "%010d.npz" % idx))
        color_cloud = pcl.create_xyzrgb(
            np.concatenate([cloud[:, :3], labels["rgb"].view('4u1')[:, :3]],
                           axis=1))

        semantic_cloud = pcl.create_xyzl(
            np.concatenate([cloud[:, :3], labels["semantic"].reshape(-1, 1)],
                           axis=1))
        instance_cloud = pcl.create_xyzl(
            np.concatenate([cloud[:, :3], labels["instance"].reshape(-1, 1)],
                           axis=1))
        distance = os.path.join(kitti360_location, "data_3d_semantics", seq,
                                "indexed", "%010d.dist.npy" % idx)
        distance = np.load(distance)
        print("Index:", idx, ", MAX distance", np.max(distance))
        distance_cloud = pcl.create_xyzi(
            np.concatenate(
                [cloud[:, :3], distance.reshape(-1, 1)], axis=1))

        # gt = pcl.io.load_ply("/media/jacob/Storage/Datasets/kitti360/data_3d_semantics/2013_05_28_drive_0000_sync/static/000834_001286.ply")
        # semantic_cloud = pcl.create_xyzl(np.concatenate([gt.xyz, gt.to_ndarray()['semantic'].reshape(-1, 1)], axis=1))
        # instance_cloud = pcl.create_xyzl(np.concatenate([gt.xyz, gt.to_ndarray()['instance'].reshape(-1, 1)], axis=1))

        pcl.io.save_pcd("instance.pcd", instance_cloud, binary=True)
        pcl.io.save_pcd("semantic.pcd", semantic_cloud, binary=True)
        pcl.io.save_pcd("distance.pcd", distance_cloud, binary=True)
Example #8
0
    dep = cv2.imread(dep_file, cv2.IMREAD_ANYCOLOR | cv2.IMREAD_ANYDEPTH)
    dep = dep.astype(np.float32) / 256
    dep = cv2.resize(dep, img_size)
    dep_flat = dep.reshape(1, -1)

    xyz = dep_flat * id_pts_unit
    print(xyz.shape)

    rgb_file = os.path.join(rgb_root, rgb_file_list[i])
    bgr = cv2.imread(rgb_file)
    rgb = cv2.cvtColor(bgr, cv2.COLOR_BGR2RGB)
    rgb = cv2.resize(rgb, img_size)

    rgb_flat = rgb.transpose((2, 0, 1)).reshape((3, -1))

    print(rgb_flat.shape)

    xyzrgb = np.concatenate([xyz, rgb_flat], axis=0)
    xyzrgb = xyzrgb.transpose((1, 0))

    cloud = pcl.create_xyzrgb(xyzrgb)
    print(xyzrgb.shape)
    print(xyzrgb.dtype)

    pcd_name = "{}.pcd".format(dep_file.split(".")[0])
    pcl.io.save_pcd(pcd_name, cloud)

    # break

## back projection
## save
Example #9
0
    def test_creators(self):
        # RGB points actually contains the rgba field
        cloud = pcl.create_rgb([[10, 20, 30, 30], [40, 50, 60, 60]])
        assert np.all(
            cloud.argb == np.array([[30, 10, 20, 30], [60, 40, 50, 60]]))
        assert cloud.ptype == "RGB"

        cloud = pcl.create_xyz([[1, 2, 3], [4, 5, 6]])
        assert np.all(cloud.xyz == np.array([[1, 2, 3], [4, 5, 6]]))
        assert cloud.ptype == "XYZ"

        cloud = pcl.create_xyzi([[1, 2, 3, 1], [4, 5, 6, 4]])
        assert np.all(cloud.xyz == np.array([[1, 2, 3], [4, 5, 6]]))
        assert cloud.ptype == "XYZI"

        cloud = pcl.create_xyzl([[1, 2, 3, 1], [4, 5, 6, 4]])
        assert np.all(cloud.xyz == np.array([[1, 2, 3], [4, 5, 6]]))
        assert cloud.ptype == "XYZL"

        cloud = pcl.create_xyzrgb([[1, 2, 3, 1, 2, 3], [4, 5, 6, 4, 5, 6]])
        assert np.all(cloud.xyz == np.array([[1, 2, 3], [4, 5, 6]]))
        assert cloud.ptype == "XYZRGB"

        cloud = pcl.create_xyzrgba([[1, 2, 3, 1, 2, 3, 1],
                                    [4, 5, 6, 4, 5, 6, 4]])
        assert np.all(cloud.xyz == np.array([[1, 2, 3], [4, 5, 6]]))
        assert cloud.ptype == "XYZRGBA"

        cloud = pcl.create_xyzrgbl([[1, 2, 3, 1, 2, 3, 1],
                                    [4, 5, 6, 4, 5, 6, 4]])
        assert np.all(cloud.xyz == np.array([[1, 2, 3], [4, 5, 6]]))
        assert cloud.ptype == "XYZRGBL"

        cloud = pcl.create_normal([[1, 2, 3, 3], [4, 5, 6, 6]])
        assert np.all(cloud.normal == np.array([[1, 2, 3], [4, 5, 6]]))
        assert np.all(cloud['curvature'] == [3, 6])
        assert cloud.ptype == "NORMAL"

        cloud = pcl.create_normal([[1, 2, 3], [4, 5, 6]])
        assert np.all(cloud.normal == np.array([[1, 2, 3], [4, 5, 6]]))
        assert np.all(cloud['curvature'] == 0)
        assert cloud.ptype == "NORMAL"

        cloud = pcl.create_xyzn([[1, 2, 3, 1, 2, 3, 1], [4, 5, 6, 4, 5, 6, 4]])
        assert np.all(cloud.xyz == np.array([[1, 2, 3], [4, 5, 6]]))
        assert np.all(cloud.normal == np.array([[1, 2, 3], [4, 5, 6]]))
        assert np.all(cloud['curvature'] == [1, 4])
        assert cloud.ptype == "XYZN"

        cloud = pcl.create_xyzn([[1, 2, 3, 1, 2, 3], [4, 5, 6, 4, 5, 6]])
        assert np.all(cloud.xyz == np.array([[1, 2, 3], [4, 5, 6]]))
        assert np.all(cloud.normal == np.array([[1, 2, 3], [4, 5, 6]]))
        assert np.all(cloud['curvature'] == 0)
        assert cloud.ptype == "XYZN"

        cloud = pcl.create_xyzrgbn([[1, 2, 3, 1, 2, 3, 1, 2, 3, 1],
                                    [4, 5, 6, 4, 5, 6, 4, 5, 6, 4]])
        assert np.all(cloud.xyz == np.array([[1, 2, 3], [4, 5, 6]]))
        assert np.all(cloud.normal == np.array([[1, 2, 3], [4, 5, 6]]))
        assert np.all(cloud['curvature'] == [1, 4])
        assert cloud.ptype == "XYZRGBN"

        cloud = pcl.create_xyzrgbn([[1, 2, 3, 1, 2, 3, 1, 2, 3],
                                    [4, 5, 6, 4, 5, 6, 4, 5, 6]])
        assert np.all(cloud.xyz == np.array([[1, 2, 3], [4, 5, 6]]))
        assert np.all(cloud.normal == np.array([[1, 2, 3], [4, 5, 6]]))
        assert np.all(cloud['curvature'] == 0)
        assert cloud.ptype == "XYZRGBN"