# imports the pcreode package import pcreode # matplotlib is a commonly used package for plotting import matplotlib.pyplot as plt # pandas is a package used for making the handling of large data sets easier import pandas as pd # numpy is very common package for handling arrays and matrices import numpy as np import pdb file_nm = "./Myeloid_with_IDs.csv" data_raw = pd.read_csv(file_nm) data_raw.head() data_pca = pcreode.PCA(data_raw) data_pca.get_pca() pca_test_data = data_pca.pca_set_components(5) pca_reduced_data = data_pca.pca_set_components(3) dens = pcreode.Density(pca_reduced_data) density_1 = dens.get_density(radius=1.0) noise = 8.0 target = 50.0 file_path = './myeloid_w_ids/' #pdb.set_trace() out_graph, out_ids = pcreode.pCreode(data=pca_reduced_data, density=density_1, noise=noise,
import time checkpoints = {} # ____________________________________________________________________________ # Load data #### expression = pd.read_csv("/ti/input/expression.csv", index_col=[0]) params = json.load(open("/ti/input/params.json", "r")) checkpoints["method_afterpreproc"] = time.time() # ____________________________________________________________________________ # Infer trajectory #### # pCreode using https://github.com/KenLauLab/pCreode/blob/master/notebooks/pCreode_tutorial.ipynb # preprocess using pca data_pca = pcreode.PCA(expression) data_pca.get_pca() pca_reduced_data = data_pca.pca_set_components(min(params["n_pca_components"],expression.shape[1])) # calculate density dens = pcreode.Density(pca_reduced_data) best_guess = dens.radius_best_guess() density = dens.get_density(radius = best_guess, mute=True) # get downsampling parameters noise, target = pcreode.get_thresholds( pca_reduced_data) # run pCreode out_graph, out_ids = pcreode.pCreode( data = pca_reduced_data,
var_genes = np.loadtxt(fname='varGenes.txt', dtype='string') col0 = normData_array[:, 0] row_keep = (np.in1d(col0, var_genes) | (col0 == '')) normData_subset = normData_array[row_keep, :] normData_t = normData_subset.T dim_normData_t = np.shape(normData_t) my_data = normData_t[1:dim_normData_t[0] + 1, 1:dim_normData_t[1] + 1].astype('float') my_index = normData_t[1:dim_normData_t[0] + 1, 0] my_cols = normData_t[0, 1:dim_normData_t[1] + 1] df = pd.DataFrame(data=my_data, index=my_index, columns=my_cols) data_pca = pcreode.PCA(df) data_pca.get_pca() data_pca.pca_plot_explained_var(xlim=(0, 20)) exp_var_fname = 'sam_data_pca_exp_var' plt.savefig(fname=exp_var_fname) pca_test_data = data_pca.pca_set_components(20) fig = plt.figure(figsize=(12, 12)) ax1 = fig.add_subplot(221) ax2 = fig.add_subplot(222) ax3 = fig.add_subplot(223) ax4 = fig.add_subplot(224) cc = 'r'