def cat_post_saved(sender, **kwargs): cat = kwargs.get("instance") MEDIA_ROOT = settings.MEDIA_ROOT filename = os.path.basename(str(cat.avatar)) ext = os.path.splitext(filename)[1] avatar_dir = os.path.join("%d" % (cat.id % 1000), "%d" % cat.id) new_filename = os.path.join(avatar_dir, "%d%s" % (cat.id, ext)) filename_without_ext = os.path.splitext(filename)[0] if re.compile("^\d+$").match(filename_without_ext): if int(filename_without_ext) == cat.id: return try: os.makedirs(os.path.join(MEDIA_ROOT, "img", "avatar", avatar_dir)) except: pass abs_origin_path = os.path.join(MEDIA_ROOT, "img", "avatar", filename) abs_new_path = os.path.join(MEDIA_ROOT, "img", "avatar", new_filename) if os.path.exists(abs_origin_path): if os.path.exists(abs_new_path): os.unlink(abs_new_path) try: os.rename(abs_origin_path, abs_new_path) except: bp() pass cat.avatar = os.path.join("img", "avatar", new_filename).replace(os.sep, "/") cat.save()
def parse_datasource_file( file_path: Path, data_context: DataContext ) -> Optional[Dict[Any, Optional[Datasource]]]: datasources = {} if exists(file_path) and isfile(file_path): with open(file_path) as ds_file: # try: # data_json = json.load(ds_file) # except json.JSONDecodeError as e: # logging.error( # f"Provided datasource file ({file_path}) is not a JSON file, parse error follows: \n{e}" # ) # return None try: data_yml = yaml.load(ds_file) except Exception as e: bp() for name, ds_json in data_yml.items(): ds_spec = parse_datasource_spec(name, ds_json, None, data_context) datasources[name] = ds_spec else: logging.error( f'Provided datasource file path does not exist or is not a file: "{file_path}"' ) return None return datasources
def prepare_custom_data(working_directory, train_enc, train_dec, test_enc, test_dec, enc_vocabulary_size, dec_vocabulary_size, tokenizer=None): # Create vocabularies of the appropriate sizes. enc_vocab_path = os.path.join(working_directory, "vocab%dENC.txt" % enc_vocabulary_size) dec_vocab_path = os.path.join(working_directory, "vocab%dDEC.txt" % dec_vocabulary_size) create_vocabulary(enc_vocab_path, train_enc, enc_vocabulary_size, tokenizer) create_vocabulary(dec_vocab_path, train_dec, dec_vocabulary_size, tokenizer) # Create token ids for the training data. #bp() enc_train_ids_path = train_enc + (".ids%d" % enc_vocabulary_size) dec_train_ids_path = train_dec + (".ids%d" % dec_vocabulary_size) data_to_token_ids(train_enc, enc_train_ids_path, enc_vocab_path, tokenizer) data_to_token_ids(train_dec, dec_train_ids_path, dec_vocab_path, tokenizer) # Create token ids for the development data. bp() enc_dev_ids_path = test_enc + (".ids%d" % enc_vocabulary_size) dec_dev_ids_path = test_dec + (".ids%d" % dec_vocabulary_size) data_to_token_ids(test_enc, enc_dev_ids_path, enc_vocab_path, tokenizer) data_to_token_ids(test_dec, dec_dev_ids_path, dec_vocab_path, tokenizer) return (enc_train_ids_path, dec_train_ids_path, enc_dev_ids_path, dec_dev_ids_path, enc_vocab_path, dec_vocab_path)
def main(): if not os.path.exists(SAVE_DIR): os.mkdir(SAVE_DIR) mask_filenames = os.listdir(SAMPLE_DIR) if "extract" in ARGS.tasks: Processor = UniformPreprocessor(IMAGE_W, IMAGE_H, "shp2gir") for mask_filename in mask_filenames: print("Processing {}".format(mask_filename)) mask_path = os.path.abspath(os.path.join(SAMPLE_DIR, mask_filename)) mask_name = mask_filename.split(".")[0] mask = cv.imread(mask_path) mask, _ = Processor.process_mask(mask, "B") processed_mask_vis_path = os.path.join(SAVE_DIR, mask_name + "_processed.png") cv.imwrite(processed_mask_vis_path, mask) keypoints, keypoints_vis = get_keypoints(mask, mask_name, NUM_KEYPOINTS) if "shift" in ARGS.tasks: keypoints_filenames = mask_filenames for keypoint_filename in keypoints_filenames: print("Processing {}".format(keypoint_filename)) keypoint_path = os.path.abspath(os.path.join(SAMPLE_DIR, keypoint_filename)) keypoint_name = keypoint_filename.split(".")[0] keypoint_vis = cv.imread(keypoint_path) keypoint_vis = keypoint_vis[:IMAGE_W, :IMAGE_W, 0] keypoints = np.argwhere(keypoint_vis > 250) bp() shift_keypoints(x, y)
def spamTest(): docList = [] classList = [] fullText = [] rmax = 25 for i in range(1, 26): wordList = textParse(open('email/spam/%d.txt' % i, 'rb').read()) #print('spam wordList = ',wordList) docList.append(wordList) #print('spam docList = ',docList) fullText.extend(wordList) #print('spam fullText = ',fullText) classList.append(1) #print('spam classList = ',classList) wordList = textParse(open('email/ham/%d.txt' % i, 'rb').read()) #print('ham wordList = ',wordList) docList.append(wordList) #print('ham docList = ',docList) fullText.extend(wordList) #print('ham fullText = ',fullText) classList.append(0) #print('ham classList = ',classList) print('wordList = ', wordList) print('docList = ', docList) print('fullText = ', fullText) print('classList = ', classList) vocabList = createVocabList(docList) #create vocabulary print('vocabList = ', vocabList) top30Words = calcMostFreq(vocabList, fullText) #remove top 30 words print('top30Words = ', top30Words) bp() trainingSet = list(range(50)) testSet = [] #create test set for i in range(10): #print('len(trainingSet) = ',len(trainingSet)) randIndex = int(random.uniform(0, len(trainingSet))) #print('randIndex = ',randIndex) testSet.append(trainingSet[randIndex]) del (trainingSet[randIndex]) print('testSet = ', testSet) print('trainingSet = ', trainingSet) trainMat = [] trainClasses = [] for docIndex in trainingSet: #train the classifier (get probs) trainNB0 trainMat.append(bagOfWords2VecMN(vocabList, docList[docIndex])) #print('trainMat = ',trainMat) trainClasses.append(classList[docIndex]) #print('trainClasses = ',trainClasses) print('trainMat = ', trainMat) print('trainClasses = ', trainClasses) p0V, p1V, pSpam = trainNB0(array(trainMat), array(trainClasses)) errorCount = 0 for docIndex in testSet: #classify the remaining items wordVector = bagOfWords2VecMN(vocabList, docList[docIndex]) if classifyNB(array(wordVector), p0V, p1V, pSpam) != classList[docIndex]: errorCount += 1 print("classification error", docList[docIndex]) print('the error rate is: ', float(errorCount) / len(testSet))
def mqtt_bridge_node(): # init node rospy.init_node('mqtt_bridge_node') IoT_protocol_name = "x-amzn-mqtt-ca" aws_iot_endpoint = "a33ymm5qqy1bxl.iot.us-east-2.amazonaws.com" # <random>.iot.<region>.amazonaws.com url = "https://{}".format(aws_iot_endpoint) ca = "/home/nvidia/Downloads/certs/icstx22/Amazon_Root_CA_1.pem" cert = "/home/nvidia/Downloads/certs/icstx22/c9faf68aac-certificate.pem.crt" private = "/home/nvidia//Downloads/certs/icstx22/c9faf68aac-private.pem.key" # load parameters params = rospy.get_param("~", {}) mqtt_params = params.pop("mqtt", {}) conn_params = mqtt_params.pop("connection") mqtt_private_path = mqtt_params.pop("private_path", "") bridge_params = params.get("bridge", []) # create mqtt client # mqtt_client_factory_name = rospy.get_param( # "~mqtt_client_factory", ".mqtt_client:default_mqtt_client_factory") # mqtt_client_factory = lookup_object(mqtt_client_factory_name) ssl_context = ssl.create_default_context() ssl_context.set_alpn_protocols([IoT_protocol_name]) ssl_context.load_cert_chain(certfile=cert, keyfile=private) ssl_context.load_verify_locations(cafile=ca) # load serializer and deserializer serializer = params.get('serializer', 'json:dumps') deserializer = params.get('deserializer', 'json:loads') # dependency injection # config = create_config( # mqtt_client, serializer, deserializer, mqtt_private_path) # inject.configure(config) # configure and connect to MQTT broker mqtt_client = mqtt.Client() mqtt_client.tls_set_context(context=ssl_context) mqtt_client.on_connect = _on_connect mqtt_client.on_disconnect = _on_disconnect aws_iot_endpoint = "a33ymm5qqy1bxl.iot.us-east-2.amazonaws.com" # <random>.iot.<region>.amazonaws.com bp() mqtt_client.connect(aws_iot_endpoint, port=443) # configure bridges bridges = [] for bridge_args in bridge_params: bridges.append(create_bridge(**bridge_args)) # start MQTT loop mqtt_client.loop_start() # register shutdown callback and spin rospy.on_shutdown(mqtt_client.disconnect) rospy.on_shutdown(mqtt_client.loop_stop) rospy.spin()
def cat_photo_saved(sender, **kwargs): cat_photo = kwargs.get("instance") MEDIA_ROOT = settings.MEDIA_ROOT origin_filename = cat_photo.origin.__str__() filename = os.path.basename(origin_filename) ext = os.path.splitext(filename)[1] photo_dir = os.path.join("%d" % (cat_photo.cat.id % 1000), "%d" % cat_photo.cat.id) new_filename = os.path.join("%d%s" % (cat_photo.id, ext)) abs_photo_dir = os.path.join(MEDIA_ROOT, "img", "photo", photo_dir) filename_without_ext = os.path.splitext(filename)[0] if re.compile("^\d+$").match(filename_without_ext): if int(filename_without_ext) == cat_photo.id: return try: os.makedirs(abs_photo_dir) except: pass abs_origin_path = os.path.join(MEDIA_ROOT, origin_filename) abs_new_path = os.path.join(abs_photo_dir, new_filename) if os.path.exists(abs_origin_path): if os.path.exists(abs_new_path): os.unlink(abs_new_path) try: os.rename(abs_origin_path, abs_new_path) except: bp() pass cat_photo.origin = os.path.join("img", "photo", photo_dir, new_filename).replace(os.sep, "/") cat_photo.save() origin_bitmap = Image.open(os.path.join(abs_photo_dir, new_filename)) w, h = origin_bitmap.size # list_thumbnail = origin_bitmap.copy ( ) if w > h: list_thumbnail = origin_bitmap.crop(((w - h) / 2, 0, h + (w - h) / 2, h)) else: list_thumbnail = origin_bitmap.crop((0, (h - w) / 2, w, w)) print list_thumbnail.size list_thumbnail.thumbnail((220, 220)) list_thumbnail.save(os.path.join(abs_photo_dir, "%d_%s" % (220, new_filename))) # w, h = get_crop_image_size ( ( w, h ) ) # origin_bitmap = origin_bitmap.crop ( ( 0, 0, w, h ) ) for THUMBNAIL in getattr(settings, "THUMBNAILS", (480)): thumbnail_bitmap = origin_bitmap.copy() thumbnail_bitmap.thumbnail((THUMBNAIL, float(THUMBNAIL) / w * h)) thumbnail_bitmap.save(os.path.join(abs_photo_dir, "%d_%s" % (THUMBNAIL, new_filename)))
def chooseBestSplit(dataSet, leafType=regLeaf, errType=regErr, ops=(1, 4)): tolS = ops[0] tolN = ops[1] print("tolS ", tolS) print("tolN ", tolN) print("dataSet[:,-1 ", dataSet[:, -1]) print("len(set(dataSet[:,-1].T.tolist()[0])) ", len(set(dataSet[:, -1].T.tolist()[0]))) #if all the target variables are the same value: quit and return value if len(set(dataSet[:, -1].T.tolist()[0])) == 1: #exit cond 1 return None, leafType(dataSet) m, n = shape(dataSet) #the choice of the best feature is driven by Reduction in RSS error from mean S = errType(dataSet) print("S ", S) bestS = inf bestIndex = 0 bestValue = 0 for featIndex in range(n - 1): print("featIndex ", featIndex) for splitVal in set(dataSet[:, featIndex].flatten().tolist()[0]): print("splitVal ", splitVal) mat0, mat1 = binSplitDataSet(dataSet, featIndex, splitVal) print("mat0 ", mat0) print("mat1 ", mat1) print("shape(mat0)[0] ", shape(mat0)[0]) print("shape(mat1)[0] ", shape(mat1)[0]) print("mat0 ", tolN) bp() if (shape(mat0)[0] < tolN) or (shape(mat1)[0] < tolN): continue newS = errType(mat0) + errType(mat1) print("newS ", newS) print("bestS ", bestS) if newS < bestS: bestIndex = featIndex bestValue = splitVal bestS = newS print("bestIndex ", bestIndex) print("bestValue ", bestValue) print("bestS ", bestS) print("tolS ", tolS) #if the decrease (S-bestS) is less than a threshold don't do the split if (S - bestS) < tolS: return None, leafType(dataSet) #exit cond 2 mat0, mat1 = binSplitDataSet(dataSet, bestIndex, bestValue) print("-----22222222----------- ") print("mat0 ", mat0) print("mat1 ", mat1) print("shape(mat0)[0] ", shape(mat0)[0]) print("shape(mat1)[0] ", shape(mat1)[0]) print("mat0 ", tolN) if (shape(mat0)[0] < tolN) or (shape(mat1)[0] < tolN): #exit cond 3 return None, leafType(dataSet) return bestIndex, bestValue #returns the best feature to split on
def reproject2(self, target_z_dist, rewards, terminates): try: #next_distr = next_distr_v.data.cpu().numpy() rewards = rewards.reshape(-1) terminates = terminates.reshape(-1).astype(bool) #dones_mask = dones_mask_t.cpu().numpy().astype(np.bool) #batch_size = len(rewards) proj_distr = np.zeros((self.batch_size, self.n_atoms), dtype=np.float32) #pdb.set_trace() for atom in range(self.n_atoms): tz_j = np.minimum( self.v_max, np.maximum( self.v_min, rewards + (self.v_min + atom * self.delta) * self.gamma)) b_j = (tz_j - self.v_min) / self.delta l = np.floor(b_j).astype(np.int64) u = np.ceil(b_j).astype(np.int64) eq_mask = (u == l).astype(bool) proj_distr[eq_mask, l[eq_mask]] += target_z_dist[eq_mask, atom] ne_mask = (u != l).astype(bool) proj_distr[ne_mask, l[ne_mask]] += target_z_dist[ne_mask, atom] * ( u - b_j)[ne_mask] proj_distr[ne_mask, u[ne_mask]] += target_z_dist[ne_mask, atom] * ( b_j - l)[ne_mask] if terminates.any(): proj_distr[terminates] = 0.0 tz_j = np.minimum(self.v_max, np.maximum(self.v_min, rewards[terminates])) b_j = (tz_j - self.v_min) / self.delta l = np.floor(b_j).astype(np.int64) u = np.ceil(b_j).astype(np.int64) eq_mask = (u == l).astype(bool) eq_dones = terminates.copy() eq_dones[terminates] = eq_mask if eq_dones.any(): proj_distr[eq_dones, l] = 1.0 ne_mask = (u != l).astype(bool) ne_dones = terminates.copy() ne_dones[terminates] = ne_mask.astype(bool) if ne_dones.any(): proj_distr[ne_dones, l] = (u - b_j)[ne_mask] proj_distr[ne_dones, u] = (b_j - l)[ne_mask] except Exception as e: print(e) bp() return proj_distr
def download(request, bucket, path): query_string = request.META.get("QUERY_STRING") no_operator = "" == query_string if no_operator: key = path else: operator = ImageThumbnailOperator(query_string) operator.process(path, join(QINIU_MEDIA_ROOT, bucket)) bp() key = operator.cache_key(path) return serve(request, key, join(QINIU_MEDIA_ROOT, bucket))
def replace_tiles_no_threading(self): total = len(self.large_image_data)-1 for index,item in enumerate(self.large_image_data): if (index %10 == 0 or index == total) and self.print_progress: print('------{:.1%} of mosaic processed ------'.format(index/float(total)),end='\r') best_tile_index = self.get_best_fit_tile(self.small_image_data[index]) try: self.large_image_data[index] = self.large_tile_data[best_tile_index] except: bp() if self.character_dictionary: self.char_matrix.append(self.character_dictionary[best_tile_index])
def warmup(self): self.ddpg.actor.eval() # bp() for i in range(5000 // args.max_steps): addExperienceToBuffer(self.ddpg, self.ddpg.replayBuffer, self.env, her=args.her, her_ratio=0.8) # bp() return counter = 0 state = self.env.reset() episode_states = [] episode_rewards = [] episode_actions = [] while counter < args.warmup: action = to_numpy(self.ddpg.actor(to_tensor(state.reshape( -1)))) #np.random.uniform(-1.0, 1.0, size=act_dim) next_state, reward, done, _ = self.env.step( np.clip(action + self.ddpg.noise.sample(), -1, 1)) #### n-steps buffer episode_states.append(state) episode_actions.append(action) episode_rewards.append(reward) if len(episode_states) >= args.n_steps: cum_reward = 0. exp_gamma = 1 for k in range(-args.n_steps, 0): try: cum_reward += exp_gamma * episode_rewards[k] except: bp() exp_gamma *= args.gamma self.ddpg.replayBuffer.add( episode_states[-args.n_steps].reshape(-1), episode_actions[-1], cum_reward, next_state, done) if done: episode_states = [] episode_rewards = [] episode_actions = [] state = self.env.reset() else: state = next_state counter += 1
def main(): #------------------------init--------------------# tx_fifo = [] coded_vector = [] lanes = [[] for y in range(NLANES)] cgmii_module = tx.CgmiiFSM() #rx_decoder_module = rx.rx_FSM() tx_scrambler_module = tx.Scrambler() rx_scrambler_module = tx.Scrambler() par_scrambler = ps.ParallelScrambler() generator = gen.ScrmGen() SEED = np.random.randint(0,2,58) #tx_scrambler_module.shift_reg = copy.deepcopy(SEED) #rx_scrambler_module.shift_reg = copy.deepcopy(SEED) #rx_scrambler = Scrambler() for clock in range (0,NCLOCK): # MAIN LOOP tx_raw = cgmii_module.tx_raw #bloque recibido desde cgmii #codificacion if tx_raw['block_name'] in tx.ENCODER : tx_coded = tx.ENCODER[ tx_raw['block_name'] ] else : tx_coded = tx.ENCODER['ERROR_BLOCK'] func = generator.scrm_func(tx_coded) for i in func : print '\n' ,i print '\n \n' coded_vector.append(tx_coded) #solo para debugging #rx_decoder_module.change_state(tx_coded) # cgmii_module.change_state(0) serial = tx_scrambler_module.tx_scrambling(tx_coded) par = par_scrambler.par_scrambling(tx_coded) binpar = ''.join(str(x) for x in par) print 'serial : ', bin(serial['payload']) print '\n' print 'parallel: ', binpar print '\n' bp()
def log_probs(self, actions, is_sum=True): # actions: (batch, coord) log_probs = [] for coord in range(len(self.distributions)): try: log_probs.append(self.distributions[coord].log_probs( actions[:, coord:coord + 1])) except: bp() log_probs.append(self.distributions[coord].log_probs( actions[:, coord:coord + 1])) log_probs = torch.cat(log_probs, dim=1) if is_sum: return log_probs.sum(-1).unsqueeze(-1) else: return log_probs
def probar_Tinv(ts,marca_log): sigma = [] for i in N_TRANSICIONES: sigma.append([ts.count(i[1:])]) bp() sigma = numpy.matrix(sigma) with open(PETRI_FILE) as fd : jobs = json.loads(fd.read()) matI = numpy.matrix(jobs['petriNet']['incidence_matrix']) Mi = numpy.matrix(jobs['petriNet']['init_marking']) Mf = numpy.transpose((matI * sigma)) + Mi Mlog = numpy.matrix(marca_log) print('\nMarcado final atravez de invariantes : \n',Mf,'\n') print('Marcado final del log :\n', Mlog, '\n') print('Comparacion : ', Mlog == Mf)
def CrimeMain(): global Param ## User Case Preprocessing DataPath = "/Users/dueheelee/Documents/PyApp/DataMart/Springleaf/" TrainX, TrainY, TestsX, NClass, UniqueTerm = PreProcessing(DataPath) bp() ## Visualization PreVisualization(TrainX, TrainY, NClass, UniqueTerm) ## User Parameter Calling Param = ParameterSetting(NClass) ## Cross Validation Ticket Generation FunRMSE, SavePredict = CrossVal(Param, TrainX, TrainY) ## Select the Ensemble Function and Weights TrainOutput, Weight, BestGroup, BestMachine = Ensemble( Param, FunRMSE, SavePredict, TrainY) ## The First Final Training SaveForecast = FinalTraining(Param, TrainX, TrainY, TestsX, Weight, BestGroup, BestMachine) ## PostProcessing and Printing PostPrinting(SaveForecast, UniqueTerm, 'Sub1.csv') ## Preparing Second Race NewTrainX, NewTestsX = SecondWave(TrainOutput, SaveForecast, TrainX, TestsX) ## The Second Cross Validation FunRMSE2, SavePredict2 = CrossVal(Param, NewTrainX, TrainY) ## Ensemble Prediction TrainOutput2, Weight2, BestGroup2, BestMachine2 = Ensemble( Param, FunRMSE2, SavePredict2, TrainY) ## The Second Final Training SaveForecast2 = FinalTraining(Param, NewTrainX, TrainY, NewTestsX, Weight2, BestGroup2, BestMachine2) ## PostProcessing and Printing PostPrinting(SaveForecast2, UniqueTerm, 'Sub2.csv')
def run(): train_image_batch, train_label_batch, test_image, test_label = load_images() init_op = tf.group( tf.local_variables_initializer(), tf.global_variables_initializer(), ) with tf.Session() as sess: sess.run(init_op) coord = tf.train.Coordinator() tf.train.start_queue_runners( sess=sess, coord=coord, ) bp() pass
def main(): #Init #Simulation variables sh_index = 65 #con 64 se engancha en 64 ciclos de clock break_flag = False #sh_cnt_limit = 64 parametro para la fsm #sh_invld_limit = 32 parametro para la fsm Block_Sync_Module = bs.BlockSyncModule(0) Block_Sync_Module.reset() random_change = random.randint(70, 233) #Files block_sync_input = open("block-sync-input.txt", "w") block_sync_output = open("block-sync-output.txt", "w") block_lock_flag = open("block-lock-flag.txt", "w") #main loop for clock in range(NCLOCK): in_block = gen_block(sh_index) in_block = break_sh(in_block, break_flag, sh_index) Block_Sync_Module.receive_block(in_block) for i in range(5): Block_Sync_Module.FSM_change_state() out_block = Block_Sync_Module.get_block() bin_input = block_to_bin(in_block) bin_output = block_to_bin(out_block) bin_flag = bin(Block_Sync_Module.block_lock)[2:] #format bin_input = ''.join(map(lambda x: x + ' ', bin_input)) bin_output = ''.join(map(lambda x: x + ' ', bin_output)) block_sync_input.write(bin_input + '\n') block_sync_output.write(bin_output + '\n') block_lock_flag.write(bin_flag + '\n') if ((clock % random_change) == 0): sh_index -= 1 if (sh_index < 0): bp() break
def getAllCardsInfo(): board_name = 'Liceo digital' all_boards = client.list_boards() alldata = getBoardData(board_name, 'CMMEdu', client, '2001-01-01', '2030-01-01') all_cards_names = alldata[board_name]['cards'] batch_counter = 0 batch_actual = [] acciones_batch = [] nombres_tarjetas = [] all_cards_names = all_cards_names[10:14] for j in range(len(all_cards_names)): if batch_counter < 10: batch_counter += 1 batch_actual.append(all_cards_names[j].id) if batch_counter == 10 or j == len(all_cards_names) - 1: # bp() acciones_batch_aux = urlRequestCard(batch_actual, 'actions') for x in acciones_batch_aux: acciones_batch.append(x['200']) # bp() nombres_tarjetas.append(all_cards_names[j].name) batch_counter = 0 batch_actual = [] all_cards = acciones_batch dates_of_actions_in_cards = [] for card in all_cards: dates_of_this_card = [] for action in card: dates_of_this_card.append({ 'date': action['date'], 'type': action['type'], 'id': action['id'] }) sorted(dates_of_this_card, key=lambda x: x['date']) dates_of_actions_in_cards.append(dates_of_this_card) prettyDicts(dates_of_actions_in_cards) bp() # prettyDicts(all_cards[1]) return all_cards
def process_plot_label_strings(indexes, string_container): new_strings = [] if isinstance(string_container, list): pass else: string_container = list(string_container) try: for item in string_container: data = np.array(item.split('_')) new_string = '' for s in data[indexes]: new_string += s + ' ' new_strings.append(new_string) except: bp() return new_strings
def generateMatrix(self, A): matrix = [x for x in [0] * A] list_items = [i for i in range(A * A, 0, -1)] r, l = 0, 0 m, n = A, A while r < m and l < n: # fill the first row sub_matrix = [] for i in range(l, n): sub_matrix += [list_items.pop()] matrix[r] = sub_matrix r += 1 # print(list_items) bp() print(matrix) print('/n/n') # fill the last column for i in range(r, m): print(i) print(matrix[i][n - 1]) matrix[i][n - 1] = list_items.pop() matrix[i][n - 1] = sub_matrix n -= 1 print(matrix) print('/m/m') if r < m: # fill the last row for i in range(n - 1, l - 1, -1): matrix[m - 1][i] = list_items.pop() m -= 1 if l < n: # fill the first column for i in range(m - 1, r - 1, -1): matrix[i][l] = list_items.pop() m -= 1 return matrix
def setup_solver(self): # Call setup_nlp to generate the NLP nlp_dict_out = setup_nlp.setup_nlp(self.model, self.optimizer) # Set options opts = {} opts["expand"] = True opts["ipopt.linear_solver"] = self.optimizer.linear_solver #NOTE: this could be passed as parameters of the optimizer class opts["ipopt.max_iter"] = 500 opts["ipopt.tol"] = 1e-6 opts["ipopt.print_level"] = 5 # Setup the solver opts["print_time"] = False start_time = time.time() solver = nlpsol("solver", self.optimizer.nlp_solver, nlp_dict_out['nlp_fcn'], opts) elapsed_time = time.time() - start_time bp() arg = {} # Initial condition arg["x0"] = nlp_dict_out['vars_init'] # Bounds on x arg["lbx"] = nlp_dict_out['vars_lb'] arg["ubx"] = nlp_dict_out['vars_ub'] # Bounds on g arg["lbg"] = nlp_dict_out['lbg'] arg["ubg"] = nlp_dict_out['ubg'] # NLP parameters nu = self.model.u.size(1) ntv_p = self.model.tv_p.size(1) nk = self.optimizer.n_horizon parameters_setup_nlp = struct_symMX( [entry("uk_prev", shape=(nu)), entry("TV_P", shape=(ntv_p, nk))]) param = parameters_setup_nlp(0) # First value of the nlp parameters param["uk_prev"] = self.model.ocp.u0 param["TV_P"] = self.optimizer.tv_p_values[0] arg["p"] = param # Add new attributes to the optimizer class self.optimizer.solver = solver self.optimizer.arg = arg self.optimizer.nlp_dict_out = nlp_dict_out
def conv(): in_channels, out_channels, D = 2, 3, 2 bp() coords, feats, labels = data_loader(in_channels, batch_size=1) # Convolution input = ME.SparseTensor(feats=feats, coords=coords) conv = ME.MinkowskiConvolution(in_channels, out_channels, kernel_size=3, stride=2, has_bias=False, dimension=D) output = conv(input) print('Input:') print_sparse_tensor(input) print('Output:') print_sparse_tensor(output) # Convolution transpose and generate new coordinates strided_coords, tensor_stride = get_random_coords() bp() input = ME.SparseTensor( feats=torch.rand(len(strided_coords), in_channels), # coords=strided_coords, tensor_stride=tensor_stride) conv_tr = ME.MinkowskiConvolutionTranspose(in_channels, out_channels, kernel_size=3, stride=2, has_bias=False, dimension=D) output = conv_tr(input) print('\nInput:') print_sparse_tensor(input) print('Convolution Transpose Output:') print_sparse_tensor(output)
def main(): #--------------------init----------------------# #sim variables cgmii_module = tx.CgmiiFSM(40, 12) idle_del_module = iddel.IdleDeletionModule(NBLOCKS, NLANES) tx_encoder_input = [] tx_raw_input = [] #files idle_del_input_data_file = open("idle-deletion-input-data.txt", "w") idle_del_input_ctrl_file = open("idle-deletion-input-ctrl.txt", "w") idle_del_output_data_file = open("idle-deletion-output-data.txt", "w") idle_del_output_ctrl_file = open("idle-deletion-output-ctrl.txt", "w") #-------------simulation begin------------------# for clock in range(0, NCLOCK): # MAIN LOOP tx_raw = cgmii_module.tx_raw #bloque recibido desde cgmii #tx_raw_input.append(tx_raw) cgmii_module.change_state(0) (bin_input_data, bin_input_ctrl) = tb.cgmii_block_to_bin(tx_raw) idle_del_module.add_block(tx_raw) tx_block = idle_del_module.get_block() (bin_output_data, bin_output_ctrl) = tb.cgmii_block_to_bin(tx_block) #tx_encoder_input.append(tx_block) print '\n\n NAME:', tx_block['block_name'] #format bin_input_data = ''.join(map(lambda x: x + ' ', bin_input_data)) bin_input_ctrl = ''.join(map(lambda x: x + ' ', bin_input_ctrl)) bin_output_data = ''.join(map(lambda x: x + ' ', bin_output_data)) bin_output_ctrl = ''.join(map(lambda x: x + ' ', bin_output_ctrl)) #write idle_del_input_data_file.write(bin_input_data + '\n') idle_del_input_ctrl_file.write(bin_input_ctrl + '\n') idle_del_output_data_file.write(bin_output_data + '\n') idle_del_output_ctrl_file.write(bin_output_ctrl + '\n') bp()
def main(): with open(LOG_FILE) as fd: raw = fd.read() raw = re.findall('(?:INFO).*',raw) raw = list(map(lambda x : x.replace('INFO: ', ''), raw)) jslist = [] for item in raw : jslist.append(json.loads(item)) #genero lista de disparos y marcados transiciones = [] marcados = [] for js in jslist : transiciones.append(js['disparo']) marcados.append(js['marcado']) for i in N_TRANSICIONES : if transiciones.count(i) < 1: print('La transicion : ', i, ' no se disparo nunca\n') for i in N_TRANSICIONES : print('La transicion : ', i, ' se disparo ', transiciones.count(i)) for i in range(len(transiciones)): if transiciones[i] == 'T1' : transiciones[i] = 'T0' t_inv_mat = [] t_inv_mat.append(remover_invariantes(transiciones,['T7','T0','T2','T3','T4','T15','T5','T6'])) #t_inv_mat.append(remover_invariantes(transiciones,['T8','T10','T9','T11'])) t_inv_mat.append(remover_invariantes(transiciones,['T13','T12','T14'])) clean = [] for i in t_inv_mat: bp() clean += i.split('T') for i in range(len(transiciones)) : if transiciones[i] in ['T7','T0','T2','T3','T4','T15','T5','T6','T13','T12','T14'] : transiciones[i] = '' clean += ''.join(transiciones).split('T') probar_Tinv(clean, marcados[-1])
def binary_search(arr, target): if len(arr) < 1: return -1 low = 0 high = len(arr) - 1 while low <= high: bp() middle = (high + low) // 2 if arr[middle] == target: return middle else: if target > arr[middle]: low = middle + 1 elif target < arr[middle]: high = middle - 1 return -1
def main(): #simulation variables Am_Lock_Module = am.AlignMarkerLockModule(AM_PERIOD, AM_INV) tx_block = [] rx_block = [] #file variables am_lock_input = open("am-lock-input-file.txt", "w") am_lock_output = open("am-lock-output-file.txt", "w") am_lock_flag = open("am-lock-flag-file.txt", "w") for clock in range(N_CLOCK): block = {'block_name': 'DATA BLOCK', 'payload': 0x10000000000000000} block['payload'] = random.getrandbits(64) #random payload block['payload'] |= 3 << 65 # sh if (clock % AM_PERIOD) == 0 and clock > 0: block['block_name'] = 'ALIGNER' block['payload'] = align_marker_list[PHY_LANE_ID] tx_block.append(block) bp() Am_Lock_Module.receive_block(block) Am_Lock_Module.FSM_change_state(True, block) recv_block = Am_Lock_Module.get_block() #rx_block.append(recv_block) #bin convert bin_input_block = block_to_bin(block) bin_output_block = block_to_bin(recv_block) bin_am_flag = bin(Am_Lock_Module.am_lock)[2:] #format bin_input_block = ''.join(map(lambda x: x + ' ', bin_input_block)) bin_output_block = ''.join(map(lambda x: x + ' ', bin_input_block)) am_lock_input.write(bin_input_block + '\n') am_lock_output.write(bin_output_block + '\n') am_lock_flag.write(bin_am_flag + '\n')
def transformState(self,rawAgentState,stateCollection,featuretransformargs): #print 'Transform state' agentState= np.append(rawAgentState[0:10] ,rawAgentState [10+2*(self.teamSize-1):10+3*(self.teamSize-1)]) #print "Agent State: "+str(agentState) teamState=[] #Weird Synchronization fix stateCollection = [x for x in stateCollection if type(x)!=type(1)] for u in range(len(stateCollection)): try: if stateCollection[u][0]!=agentState[0] or stateCollection[u][1]!=agentState[1]: teamState += stateCollection[u][0:10].tolist() except: #print stateCollection #print u #print stateCollection[u]\ #print "Inside Bad" bp() #print "team state is as :"+str(teamState) opponentState= rawAgentState [10+6*(self.teamSize-1)-1:-1] return agentState,teamState,opponentState
def generateRules(L, supportData, minConf=0.7): #supportData is a dict coming from scanD bigRuleList = [] print("----------------------------------") print("len(L)", len(L)) print("L", L) print("supportData", supportData) print("minConf", minConf) print("----------------------------------") for i in range(1, len(L)): #only get the sets with two or more items print("i", i) for freqSet in L[i]: print("freqSet", freqSet) H1 = [frozenset([item]) for item in freqSet] print("H1 = ", H1) if (i > 1): rulesFromConseq(freqSet, H1, supportData, bigRuleList, minConf) else: calcConf(freqSet, H1, supportData, bigRuleList, minConf) bp() return bigRuleList
def rhs(self, evolution_vector): """ The ODE *right hand side* in ``dy / dt = f(y)``. ``y`` is a numpy vector, and ``f(y)`` returns a similarly sized (numpy) vector which we call ``rhs`` here: >>> ode = to_scipy(State({ Symbol("x"): Symbol("int")(Symbol("x"),0.1,1) })) >>> y1 = ode.y0 + ode.rhs(ode.y0) * ode.dt # perform some euler integration step >>> y1 array([0.9]) Usually, you want to pass this function to some scipy integrator. See also :meth:`ft`. """ values = self.evaluate_state(evolution_vector) dqdt = [ evaluate_values(self.state[var], values) for var in self.vars.evolved ] # gather if np.any(np.isnan(np.array(dqdt))): from pdb import set_trace as bp bp() return np.array(dqdt)
def PrepareRandomWalk(ParameterJsonFile = None, diameter = 100, num_particles = 1, frames = 100, RatioDroppedFrames = 0, EstimationPrecision = 0, mass = 0, frames_per_second = 100, microns_per_pixel = 1, temp_water = 293, visc_water = 9.5e-16): """ configure the parameters for a randowm walk out of a JSON file, and generate it in a DataFrame """ if ParameterJsonFile != None: #read para file if existing settings = nd.handle_data.ReadJson(ParameterJsonFile) diameter = settings["Simulation"]["DiameterOfParticles"] num_particles = settings["Simulation"]["NumberOfParticles"] frames = settings["Simulation"]["NumberOfFrames"] RatioDroppedFrames = settings["Simulation"]["RatioDroppedFrames"] EstimationPrecision = settings["Simulation"]["EstimationPrecision"] mass = settings["Simulation"]["mass"] frames_per_second = settings["Exp"]["fps"] microns_per_pixel = settings["Exp"]["Microns_per_pixel"] temp_water = settings["Exp"]["Temperature"] solvent = settings["Exp"]["solvent"] if settings["Exp"]["Viscosity_auto"] == 1: visc_water = nd.handle_data.GetViscocity(temperature = temp_water, solvent = solvent) bp() else: visc_water = settings["Exp"]["Viscosity"] output = GenerateRandomWalk(diameter, num_particles, frames, frames_per_second, RatioDroppedFrames = RatioDroppedFrames, ep = EstimationPrecision, mass = mass, microns_per_pixel = microns_per_pixel, temp_water = temp_water, visc_water = visc_water) if ParameterJsonFile != None: # write if para file is given nd.handle_data.WriteJson(ParameterJsonFile, settings) return output
def write_string_body(root, depth): if isinstance(root, FList): g.nesting += 1 for child in root: write_string_body(child, depth) g.nesting -= 1 write_sep("\n", pos=root.pos) elif isinstance(root, FQuote): write_sep("pushf:", pos=root.pos) write_sep(root.func_name, pos=root.pos) elif isinstance(root, FCall): if str(root) in ["return", "return_two"]: write_sep("%s%s" % (root, depth), pos=root.pos) else: write_sep(str(root), pos=root.pos) elif isinstance(root, FStr): write_sep(root.str, pos=root.pos) elif isinstance(root, FComment): pass elif root is None: pass else: bp()
def ibp_stub(): bp()
#### Check for a name inside a python library #### import cv2 print [x for x in dir(cv2) if x.startswith('COLOR_')] #### Set python breakpoint as bp() #### from pdb import set_trace as bp bp() #### Print the whole nump array #### import numpy numpy.set_printoptions(threshold=numpy.nan) #Check if two points in a list are "close" to each other and make condition false after certain threshold condition=True dup1 = len([line for line in img1_pts if 100>np.absolute([np.subtract(line,(x1,y1))[0]+np.subtract(line,(x1,y1))[1]*1j]) ]) dup2 = len([line for line in img2_pts if 100>np.absolute([np.subtract(line,(x2,y2))[0]+np.subtract(line,(x2,y2))[1]*1j]) ]) if (dup1>1 or dup2>1): condition = False #Try to check if file is empty, Except create an empty file try: os.stat(file).st_size == 0 except: open(file, 'w').close() #Open and read numerical data in file with Numpy cf = open(file,'r') cluster_centers_ = np.loadtxt(cf) cf.close()
def test_encode_multipart_data(self): test = encode_multipart_data({'bar': 42}, ('myfile', 'inputs/test.csv', open('inputs/test.csv', 'rb'))) bp()
map = Basemap( projection = 'cyl', lon_0=-122.44576, lat_0=37.752303, llcrnrlon=-122.52469, llcrnrlat=37.69862, urcrnrlon=-122.33663, urcrnrlat=37.82986, resolution = 'h') mapdata=np.loadtxt('sf_map_copyright_openstreetmap_contributors.txt') plt.imshow(mapdata, cmap = plt.get_cmap('gray'), extent=[-122.52469, -122.33663, 37.69862, 37.82986]) plt.title(i) plt.show() bp() #use quit() to quit ipdb status, use c to continue #%% convert variables x1=pd.get_dummies(df[['DayOfWeek','PdDistrict','Resolution','Descript']]) #x1=pd.get_dummies(df[['DayOfWeek','PdDistrict']]) X=np.hstack((x1,df[['Hour','month','year']])) from sklearn.preprocessing import LabelEncoder le=LabelEncoder() y = le.fit_transform(y) #transform original target to numbers #%% split to training and testing data from sklearn.cross_validation import train_test_split X_train,X_test,y_train,y_test=train_test_split(X,y,test_size = .3)