def relaxed_stream_plan(evaluations, goal_expression, domain, all_results, negative, unit_efforts, effort_weight, max_effort, simultaneous=False, reachieve=True, unit_costs=False, debug=False, **kwargs): # TODO: alternatively could translate with stream actions on real opt_state and just discard them # TODO: only consider axioms that have stream conditions? applied_results, deferred_results = partition_results( evaluations, all_results, apply_now=lambda r: not (simultaneous or r.external.info.simultaneous)) stream_domain, result_from_name = add_stream_actions( domain, deferred_results) opt_evaluations = apply_streams(evaluations, applied_results) # if n.effort < INF if reachieve: achieved_results = { r for r in evaluations.values() if isinstance(r, Result) } init_evaluations = { e for e, r in evaluations.items() if r not in achieved_results } applied_results = achieved_results | set(applied_results) evaluations = init_evaluations # For clarity # TODO: could iteratively increase max_effort node_from_atom = get_achieving_streams(evaluations, applied_results, unit_efforts=unit_efforts, max_effort=max_effort) if using_optimizers(all_results): goal_expression = add_unsatisfiable_to_goal(stream_domain, goal_expression) problem = get_problem(opt_evaluations, goal_expression, stream_domain, unit_costs) # begin_metric with Verbose(debug): instantiated = instantiate_task( task_from_domain_problem(stream_domain, problem)) if instantiated is None: return None, INF cost_from_action = {action: action.cost for action in instantiated.actions} if (effort_weight is not None) or using_optimizers(applied_results): add_stream_efforts(node_from_atom, instantiated, effort_weight, unit_efforts=unit_efforts) add_optimizer_axioms(all_results, instantiated) action_from_name = rename_instantiated_actions(instantiated) with Verbose(debug): sas_task = sas_from_instantiated(instantiated) sas_task.metric = True # TODO: apply renaming to hierarchy as well # solve_from_task | serialized_solve_from_task | abstrips_solve_from_task | abstrips_solve_from_task_sequential action_plan, _ = solve_from_task(sas_task, debug=debug, **kwargs) if action_plan is None: return None, INF action_instances = [action_from_name[name] for name, _ in action_plan] cost = get_plan_cost(action_instances, cost_from_action, unit_costs) axiom_plans = recover_axioms_plans(instantiated, action_instances) applied_plan, function_plan = partition_external_plan( recover_stream_plan(evaluations, opt_evaluations, goal_expression, stream_domain, node_from_atom, action_instances, axiom_plans, negative, unit_costs)) #action_plan = obj_from_pddl_plan(parse_action(instance.name) for instance in action_instances) action_plan = obj_from_pddl_plan(map(pddl_from_instance, action_instances)) deferred_plan, action_plan = partition_plan(action_plan, result_from_name) stream_plan = applied_plan + deferred_plan + function_plan combined_plan = stream_plan + action_plan return combined_plan, cost
def recover_stream_plan(evaluations, current_plan, opt_evaluations, goal_expression, domain, node_from_atom, action_plan, axiom_plans, negative, replan_step): # Universally quantified conditions are converted into negative axioms # Existentially quantified conditions are made additional preconditions # Universally quantified effects are instantiated by doing the cartesian produce of types (slow) # Added effects cancel out removed effects # TODO: node_from_atom is a subset of opt_evaluations (only missing functions) real_task = task_from_domain_problem( domain, get_problem(evaluations, goal_expression, domain)) opt_task = task_from_domain_problem( domain, get_problem(opt_evaluations, goal_expression, domain)) negative_from_name = { external.blocked_predicate: external for external in negative if external.is_negated() } real_states, full_plan = recover_negative_axioms(real_task, opt_task, axiom_plans, action_plan, negative_from_name) function_plan = compute_function_plan(opt_evaluations, action_plan) full_preimage = plan_preimage(full_plan, []) # Does not contain the stream preimage! negative_preimage = set( filter(lambda a: a.predicate in negative_from_name, full_preimage)) negative_plan = convert_negative(negative_preimage, negative_from_name, full_preimage, real_states) function_plan.update(negative_plan) # TODO: OrderedDict for these plans # TODO: this assumes that actions do not negate preimage goals positive_preimage = { l for l in (set(full_preimage) - real_states[0] - negative_preimage) if not l.negated } steps_from_fact = { fact_from_fd(l): full_preimage[l] for l in positive_preimage } last_from_fact = { fact: min(steps) for fact, steps in steps_from_fact.items() if get_prefix(fact) != EQ } #stream_plan = reschedule_stream_plan(evaluations, target_facts, domain, stream_results) # visualize_constraints(map(fact_from_fd, target_facts)) for result, step in function_plan.items(): for fact in result.get_domain(): last_from_fact[fact] = min(step, last_from_fact.get(fact, INF)) # TODO: get_steps_from_stream stream_plan = [] last_from_stream = dict(function_plan) for result in current_plan: # + negative_plan? # TODO: actually compute when these are needed + dependencies last_from_stream[result] = 0 if isinstance(result.external, Function) or (result.external in negative): function_plan.add( result) # Prevents these results from being pruned else: stream_plan.append(result) curr_evaluations = evaluations_from_stream_plan(evaluations, stream_plan, max_effort=None) extraction_facts = set(last_from_fact) - set( map(fact_from_evaluation, curr_evaluations)) extract_stream_plan(node_from_atom, extraction_facts, stream_plan) # Recomputing due to postprocess_stream_plan stream_plan = postprocess_stream_plan(evaluations, domain, stream_plan, last_from_fact) node_from_atom = get_achieving_streams(evaluations, stream_plan, max_effort=None) fact_sequence = [set(result.get_domain()) for result in stream_plan] + [extraction_facts] for facts in reversed(fact_sequence): # Bellman ford for fact in facts: # could flatten instead result = node_from_atom[fact].result if result is None: continue step = last_from_fact[fact] if result.is_deferrable() else 0 last_from_stream[result] = min(step, last_from_stream.get(result, INF)) for domain_fact in result.instance.get_domain(): last_from_fact[domain_fact] = min( last_from_stream[result], last_from_fact.get(domain_fact, INF)) stream_plan.extend(function_plan) # Useful to recover the correct DAG partial_orders = set() for child in stream_plan: # TODO: account for fluent objects for fact in child.get_domain(): parent = node_from_atom[fact].result if parent is not None: partial_orders.add((parent, child)) #stream_plan = topological_sort(stream_plan, partial_orders) bound_objects = set() for result in stream_plan: if (last_from_stream[result] == 0) or not result.is_deferrable(bound_objects=bound_objects): for ancestor in get_ancestors(result, partial_orders) | {result}: # TODO: this might change descendants of ancestor. Perform in a while loop. last_from_stream[ancestor] = 0 if isinstance(ancestor, StreamResult): bound_objects.update(out for out in ancestor.output_objects if out.is_unique()) #local_plan = [] # TODO: not sure what this was for #for fact, step in sorted(last_from_fact.items(), key=lambda pair: pair[1]): # Earliest to latest # print(step, fact) # extract_stream_plan(node_from_atom, [fact], local_plan, last_from_fact, last_from_stream) # Each stream has an earliest evaluation time # When computing the latest, use 0 if something isn't deferred # Evaluate each stream as soon as possible # Option to defer streams after a point in time? # TODO: action costs for streams that encode uncertainty state = set(real_task.init) remaining_results = list(stream_plan) first_from_stream = {} #assert 1 <= replan_step # Plan could be empty for step, instance in enumerate(action_plan): for result in list(remaining_results): # TODO: could do this more efficiently if need be domain = result.get_domain() + get_fluent_domain(result) if conditions_hold(state, map(fd_from_fact, domain)): remaining_results.remove(result) certified = { fact for fact in result.get_certified() if get_prefix(fact) != EQ } state.update(map(fd_from_fact, certified)) if step != 0: first_from_stream[result] = step # TODO: assumes no fluent axiom domain conditions apply_action(state, instance) #assert not remaining_results # Not true if retrace if first_from_stream: replan_step = min(replan_step, *first_from_stream.values()) eager_plan = [] results_from_step = defaultdict(list) for result in stream_plan: earliest_step = first_from_stream.get(result, 0) latest_step = last_from_stream.get(result, 0) assert earliest_step <= latest_step defer = replan_step <= latest_step if not defer: eager_plan.append(result) # We only perform a deferred evaluation if it has all deferred dependencies # TODO: make a flag that also allows dependencies to be deferred future = (earliest_step != 0) or defer if future: future_step = latest_step if defer else earliest_step results_from_step[future_step].append(result) # TODO: some sort of obj side-effect bug that requires obj_from_pddl to be applied last (likely due to fluent streams) eager_plan = convert_fluent_streams(eager_plan, real_states, action_plan, steps_from_fact, node_from_atom) combined_plan = [] for step, action in enumerate(action_plan): combined_plan.extend(result.get_action() for result in results_from_step[step]) combined_plan.append( transform_action_args(pddl_from_instance(action), obj_from_pddl)) # TODO: the returned facts have the same side-effect bug as above # TODO: annotate when each preimage fact is used preimage_facts = { fact_from_fd(l) for l in full_preimage if (l.predicate != EQ) and not l.negated } for negative_result in negative_plan: # TODO: function_plan preimage_facts.update(negative_result.get_certified()) for result in eager_plan: preimage_facts.update(result.get_domain()) # Might not be able to regenerate facts involving the outputs of streams preimage_facts.update( result.get_certified()) # Some facts might not be in the preimage # TODO: record streams and axioms return eager_plan, OptPlan(combined_plan, preimage_facts)
def recover_stream_plan(evaluations, goal_expression, domain, stream_results, action_plan, negative, unit_costs): import pddl import instantiate # Universally quantified conditions are converted into negative axioms # Existentially quantified conditions are made additional preconditions # Universally quantified effects are instantiated by doing the cartesian produce of types (slow) # Added effects cancel out removed effects real_task = task_from_domain_problem(domain, get_problem(evaluations, goal_expression, domain, unit_costs)) node_from_atom = get_achieving_streams(evaluations, stream_results) opt_evaluations = apply_streams(evaluations, stream_results) opt_task = task_from_domain_problem(domain, get_problem(opt_evaluations, goal_expression, domain, unit_costs)) function_assignments = {fact.fluent: fact.expression for fact in opt_task.init # init_facts if isinstance(fact, pddl.f_expression.FunctionAssignment)} type_to_objects = instantiate.get_objects_by_type(opt_task.objects, opt_task.types) results_from_head = get_results_from_head(opt_evaluations) action_instances = instantiate_actions(opt_task, type_to_objects, function_assignments, action_plan) negative_from_name = get_negative_predicates(negative) axioms_from_name = get_derived_predicates(opt_task.axioms) opt_task.init = set(opt_task.init) real_states = [set(real_task.init)] # TODO: had old way of doing this (~July 2018) preimage_plan = [] function_plan = set() for layer in action_instances: for pair, action_instance in layer: axiom_plan = extract_axiom_plan(opt_task, action_instance, negative_from_name, static_state=real_states[-1]) if axiom_plan is None: continue simplify_conditional_effects(real_states[-1], opt_task.init, action_instance, axioms_from_name) preimage_plan.extend(axiom_plan + [action_instance]) apply_action(opt_task.init, action_instance) real_states.append(set(real_states[-1])) apply_action(real_states[-1], action_instance) if not unit_costs and (pair is not None): function_result = extract_function_results(results_from_head, *pair) if function_result is not None: function_plan.add(function_result) break else: raise RuntimeError('No action instances are applicable') # TODO: could instead just accumulate difference between real and opt full_preimage = plan_preimage(preimage_plan, []) stream_preimage = set(full_preimage) - real_states[0] negative_preimage = set(filter(lambda a: a.predicate in negative_from_name, stream_preimage)) positive_preimage = stream_preimage - negative_preimage function_plan.update(convert_negative(negative_preimage, negative_from_name, full_preimage, real_states)) step_from_fact = {fact_from_fd(l): full_preimage[l] for l in positive_preimage if not l.negated} target_facts = list(step_from_fact.keys()) #stream_plan = reschedule_stream_plan(evaluations, target_facts, domain, stream_results) stream_plan = [] extract_stream_plan(node_from_atom, target_facts, stream_plan) stream_plan = prune_stream_plan(evaluations, stream_plan, target_facts) stream_plan = convert_fluent_streams(stream_plan, real_states, step_from_fact, node_from_atom) # visualize_constraints(map(fact_from_fd, stream_preimage)) if DO_RESCHEDULE: # TODO: detect this based on unique or not # TODO: maybe test if partial order between two ways of achieving facts, if not prune new_stream_plan = reschedule_stream_plan(evaluations, target_facts, domain, stream_plan) if new_stream_plan is not None: stream_plan = new_stream_plan return stream_plan + list(function_plan)
def sequential_stream_plan(evaluations, goal_expression, domain, stream_results, negated, unit_costs=True, **kwargs): if negated: raise NotImplementedError() # TODO: compute preimage and make that the goal instead opt_evaluations = evaluations_from_stream_plan(evaluations, stream_results) opt_task = task_from_domain_problem(domain, get_problem(opt_evaluations, goal_expression, domain, unit_costs)) action_plan, action_cost = solve_from_task(opt_task, **kwargs) if action_plan is None: return None, action_cost import instantiate fluent_facts = MockSet() init_facts = set() task = task_from_domain_problem(domain, get_problem(evaluations, goal_expression, domain, unit_costs)) type_to_objects = instantiate.get_objects_by_type(task.objects, task.types) task.actions, stream_result_from_name = get_stream_actions(stream_results) results_from_head = get_results_from_head(opt_evaluations) # TODO: add ordering constraints to simplify the optimization import pddl action_from_name = {} function_plan = set() for i, (name, args) in enumerate(action_plan): action = find_unique(lambda a: a.name == name, domain.actions) assert(len(action.parameters) == len(args)) #parameters = action.parameters[:action.num_external_parameters] var_mapping = {p.name: a for p, a in zip(action.parameters, args)} new_name = '{}-{}'.format(name, i) new_parameters = action.parameters[len(args):] new_preconditions = [] action.precondition.instantiate(var_mapping, init_facts, fluent_facts, new_preconditions) new_effects = [] for eff in action.effects: eff.instantiate(var_mapping, init_facts, fluent_facts, type_to_objects, new_effects) new_effects = [pddl.Effect([], pddl.Conjunction(conditions), effect) for conditions, effect in new_effects] cost = pddl.Increase(fluent=pddl.PrimitiveNumericExpression(symbol=TOTAL_COST, args=[]), expression=pddl.NumericConstant(1)) #cost = None task.actions.append(pddl.Action(new_name, new_parameters, 0, pddl.Conjunction(new_preconditions), new_effects, cost)) action_from_name[new_name] = (name, map(obj_from_pddl, args)) if not unit_costs: function_plan.update(extract_function_results(results_from_head, action, args)) planner = kwargs.get('planner', 'ff-astar') combined_plan, _ = solve_from_task(task, planner=planner, **kwargs) if combined_plan is None: return None, obj_from_pddl_plan(action_plan), INF stream_plan = [] action_plan = [] for name, args in combined_plan: if name in stream_result_from_name: stream_plan.append(stream_result_from_name[name]) else: action_plan.append(action_from_name[name]) stream_plan += list(function_plan) combined_plan = stream_plan + action_plan return combined_plan, action_cost
def plan_streams(evaluations, goal_expression, domain, all_results, negative, effort_weight, max_effort, simultaneous=False, reachieve=True, debug=False, **kwargs): # TODO: alternatively could translate with stream actions on real opt_state and just discard them # TODO: only consider axioms that have stream conditions? #reachieve = reachieve and not using_optimizers(all_results) applied_results, deferred_results = partition_results( evaluations, all_results, apply_now=lambda r: not (simultaneous or r.external.info.simultaneous)) stream_domain, deferred_from_name = add_stream_actions( domain, deferred_results) if reachieve and not using_optimizers(all_results): achieved_results = { n.result for n in evaluations.values() if isinstance(n.result, Result) } init_evaluations = { e for e, n in evaluations.items() if n.result not in achieved_results } applied_results = achieved_results | set(applied_results) evaluations = init_evaluations # For clarity # TODO: could iteratively increase max_effort node_from_atom = get_achieving_streams( evaluations, applied_results, # TODO: apply to all_results? max_effort=max_effort) opt_evaluations = { evaluation_from_fact(f): n.result for f, n in node_from_atom.items() } if using_optimizers(all_results): goal_expression = add_unsatisfiable_to_goal(stream_domain, goal_expression) problem = get_problem(opt_evaluations, goal_expression, stream_domain) # begin_metric with Verbose(debug): instantiated = instantiate_task( task_from_domain_problem(stream_domain, problem)) if instantiated is None: return None, INF if using_optimizers(all_results): # TODO: reachieve=False when using optimizers or should add applied facts instantiate_optimizer_axioms(instantiated, evaluations, goal_expression, domain, all_results) cost_from_action = {action: action.cost for action in instantiated.actions} add_stream_efforts(node_from_atom, instantiated, effort_weight) if using_optimizers(applied_results): add_optimizer_effects(instantiated, node_from_atom) action_from_name = rename_instantiated_actions(instantiated) with Verbose(debug): sas_task = sas_from_instantiated(instantiated) sas_task.metric = True # TODO: apply renaming to hierarchy as well # solve_from_task | serialized_solve_from_task | abstrips_solve_from_task | abstrips_solve_from_task_sequential action_plan, raw_cost = solve_from_task(sas_task, debug=debug, **kwargs) #print(raw_cost) if action_plan is None: return None, INF action_instances = [action_from_name[name] for name, _ in action_plan] simplify_conditional_effects(instantiated.task, action_instances) stream_plan, action_instances = recover_simultaneous( applied_results, negative, deferred_from_name, action_instances) cost = get_plan_cost(action_instances, cost_from_action) axiom_plans = recover_axioms_plans(instantiated, action_instances) stream_plan = recover_stream_plan(evaluations, stream_plan, opt_evaluations, goal_expression, stream_domain, node_from_atom, action_instances, axiom_plans, negative) #action_plan = obj_from_pddl_plan(parse_action(instance.name) for instance in action_instances) action_plan = obj_from_pddl_plan(map(pddl_from_instance, action_instances)) combined_plan = stream_plan + action_plan return combined_plan, cost