def plan_streams(evaluations, goal_expression, domain, all_results, negative, effort_weight, max_effort,
                 simultaneous=False, reachieve=True, replan_actions=set(), **kwargs):
    # TODO: alternatively could translate with stream actions on real opt_state and just discard them
    # TODO: only consider axioms that have stream conditions?
    #reachieve = reachieve and not using_optimizers(all_results)
    #for i, result in enumerate(all_results):
    #    print(i, result, result.get_effort())
    applied_results, deferred_results = partition_results(
        evaluations, all_results, apply_now=lambda r: not (simultaneous or r.external.info.simultaneous))
    stream_domain, deferred_from_name = add_stream_actions(domain, deferred_results)

    if reachieve and not using_optimizers(all_results):
        achieved_results = {n.result for n in evaluations.values() if isinstance(n.result, Result)}
        init_evaluations = {e for e, n in evaluations.items() if n.result not in achieved_results}
        applied_results = achieved_results | set(applied_results)
        evaluations = init_evaluations # For clarity

    # TODO: could iteratively increase max_effort
    node_from_atom = get_achieving_streams(evaluations, applied_results, # TODO: apply to all_results?
                                           max_effort=max_effort)
    opt_evaluations = {evaluation_from_fact(f): n.result for f, n in node_from_atom.items()}
    if UNIVERSAL_TO_CONDITIONAL or using_optimizers(all_results):
        goal_expression = add_unsatisfiable_to_goal(stream_domain, goal_expression)

    temporal = isinstance(stream_domain, SimplifiedDomain)
    optimistic_fn = solve_optimistic_temporal if temporal else solve_optimistic_sequential
    instantiated, action_instances, temporal_plan, cost = optimistic_fn(
        domain, stream_domain, applied_results, all_results, opt_evaluations,
        node_from_atom, goal_expression, effort_weight, **kwargs)
    if action_instances is None:
        return FAILED, FAILED, cost

    action_instances, axiom_plans = recover_axioms_plans(instantiated, action_instances)
    # TODO: extract out the minimum set of conditional effects that are actually required
    #simplify_conditional_effects(instantiated.task, action_instances)
    stream_plan, action_instances = recover_simultaneous(
        applied_results, negative, deferred_from_name, action_instances)

    action_plan = transform_plan_args(map(pddl_from_instance, action_instances), obj_from_pddl)
    replan_step = min([step+1 for step, action in enumerate(action_plan)
                       if action.name in replan_actions] or [len(action_plan)+1]) # step after action application

    stream_plan, opt_plan = recover_stream_plan(evaluations, stream_plan, opt_evaluations, goal_expression, stream_domain,
        node_from_atom, action_instances, axiom_plans, negative, replan_step)
    if temporal_plan is not None:
        # TODO: handle deferred streams
        assert all(isinstance(action, Action) for action in opt_plan.action_plan)
        opt_plan.action_plan[:] = temporal_plan
    return stream_plan, opt_plan, cost
Example #2
0
def apply_actions(domain, state, plan, unit_costs=False):
    # Goal serialization just assumes the tail of the plan includes an abstract action to achieve each condition
    static_state, _ = partition_facts(domain, state)
    print('Static:', static_state)
    # TODO: might need properties that involve an object that aren't useful yet
    evaluations = evaluations_from_init(state)
    #goal_exp = obj_from_value_expression(goal)
    goal_exp = None
    problem = get_problem(evaluations, goal_exp, domain, unit_costs)
    task = task_from_domain_problem(domain, problem)
    task.init = set(task.init)
    for instance in get_action_instances(
            task, transform_plan_args(plan, Object.from_value)):
        apply_action(task.init, instance)
    fluents = get_fluents(domain)
    fluent_state = [
        value_from_evaluation(evaluation_from_fd(atom)) for atom in task.init
        if isinstance(atom, pddl.Atom) and atom.predicate in fluents
    ]
    print('Fluent:', fluent_state)
    state = static_state + fluent_state
    return state