\partial_t \phi = 6 \phi \partial_x \phi - \partial_x^2 \phi which we implement using a custom PDE class below. """ from math import pi from pde import CartesianGrid, MemoryStorage, PDEBase, ScalarField, plot_kymograph class KortewegDeVriesPDE(PDEBase): """ Korteweg-de Vries equation """ def evolution_rate(self, state, t=0): """ implement the python version of the evolution equation """ assert state.grid.dim == 1 # ensure the state is one-dimensional grad = state.gradient("natural")[0] return 6 * state * grad - grad.laplace("natural") # initialize the equation and the space grid = CartesianGrid([[0, 2 * pi]], [32], periodic=True) state = ScalarField.from_expression(grid, "sin(x)") # solve the equation and store the trajectory storage = MemoryStorage() eq = KortewegDeVriesPDE() eq.solve(state, t_range=3, tracker=storage.tracker(0.1)) # plot the trajectory as a space-time plot plot_kymograph(storage)
from math import pi from pde import (CartesianGrid, ScalarField, PDEBase, MemoryStorage, plot_kymograph) class KortewegDeVriesPDE(PDEBase): """ Korteweg-de Vries equation See https://en.wikipedia.org/wiki/Korteweg–de_Vries_equation """ def evolution_rate(self, state, t=0): """ implement the python version of the evolution equation """ assert state.grid.dim == 1 # ensure the state is one-dimensional grad = state.gradient('natural')[0] return 6 * state * grad - grad.laplace('natural') # initialize the equation and the space grid = CartesianGrid([[0, 2 * pi]], [32], periodic=True) state = ScalarField.from_expression(grid, "sin(x)") eq = KortewegDeVriesPDE() # solve the equation and store the trajectory storage = MemoryStorage() eq.solve(state, t_range=3, tracker=['progress', storage.tracker(.1)]) # plot the trajectory as a space-time plot plot_kymograph(storage, show=True)
This example implements a complex PDE using the :class:`~pde.pdes.pde.PDE`. We here chose the `Schrödinger equation <https://en.wikipedia.org/wiki/Schrödinger_equation>`_ without a spatial potential in non-dimensional form: .. math:: i \partial_t \psi = -\nabla^2 \psi Note that the example imposes Neumann conditions at the wall, so the wave packet is expected to reflect off the wall. """ from math import sqrt from pde import PDE, CartesianGrid, MemoryStorage, ScalarField, plot_kymograph grid = CartesianGrid([[0, 20]], 128, periodic=False) # generate grid # create a (normalized) wave packet with a certain form as an initial condition initial_state = ScalarField.from_expression( grid, "exp(I * 5 * x) * exp(-(x - 10)**2)") initial_state /= sqrt(initial_state.to_scalar("norm_squared").integral.real) eq = PDE({"ψ": f"I * laplace(ψ)"}) # define the pde # solve the pde and store intermediate data storage = MemoryStorage() eq.solve(initial_state, t_range=2.5, dt=1e-5, tracker=[storage.tracker(0.02)]) # visualize the results as a space-time plot plot_kymograph(storage, scalar="norm_squared")
def plotky(): plot_kymograph(storage)
def kymograph_pic(): plot_kymograph(storage)
using the :class:`~pde.pdes.pde.PDE` class. In particular, we consider :math:`D(x) = 1.01 + \tanh(x)`, which gives a low diffusivity on the left side of the domain. Note that the naive implementation, :code:`PDE({"c": "divergence((1.01 + tanh(x)) * gradient(c))"})`, has numerical instabilities. This is because two finite difference approximations are nested. To arrive at a more stable numerical scheme, it is advisable to expand the divergence, .. math:: \partial_t c = D \nabla^2 c + \nabla D . \nabla c """ from pde import PDE, CartesianGrid, MemoryStorage, ScalarField, plot_kymograph # Expanded definition of the PDE diffusivity = "1.01 + tanh(x)" term_1 = f"({diffusivity}) * laplace(c)" term_2 = f"dot(gradient({diffusivity}), gradient(c))" eq = PDE({"c": f"{term_1} + {term_2}"}, bc={"value": 0}) grid = CartesianGrid([[-5, 5]], 64) # generate grid field = ScalarField(grid, 1) # generate initial condition storage = MemoryStorage() # store intermediate information of the simulation res = eq.solve(field, 100, dt=1e-3, tracker=storage.tracker(1)) # solve the PDE plot_kymograph(storage) # visualize the result in a space-time plot