Example #1
0
    def testBetaPDF6(self):
        print "\n test Beta PDF 6: Skewed"
        ZPoints = 101
        ZmeanPoints = 1
        ZvarPoints = 1

        ZMin = 0
        ZMax = 1
        ZmeanMin = 0.1
        ZmeanMax = ZmeanMin
        ZvarMin = 0.01
        ZvarMax = ZvarMin

        # create arrays of type "double *"
        Z = np.linspace(ZMin, ZMax, ZPoints)
        Zmean = np.linspace(ZmeanMin, ZmeanMax, ZmeanPoints)
        Zvar = np.linspace(ZvarMin, ZvarMax, ZvarPoints)

        # create instances of PDF class
        b = pdf.BetaPDF(Zmean, Zvar)
        bPdfValM = matrix3d.Matrix3D(ZvarPoints, ZmeanPoints, ZPoints)
        bPDF = np.zeros(ZPoints)

        # expected PDF values
        PDF = np.zeros(ZPoints)
        PDF[0] = 5.93
        PDF[1] = 1.43
        PDF[2] = 0.209
        PDF[3] = 0.01557
        PDF[4] = 0
        PDF[5] = 0

        # calculate PDF
        bTest = b.pdfVal(Z, bPdfValM)

        # test
        for k in range(ZPoints):
            bPDF[k] = bPdfValM.GetVal(0, 0, 20 * k)
        """
        print "PDF[0] = inf, bPDF[0] = " + str(bPDF[0])
        print "PDF[1] = " + str(PDF[1]) + ", bPDF[1] = " + str(bPDF[1])
        print "PDF[2] = " + str(PDF[2]) + ", bPDF[2] = " + str(bPDF[2])
        print "PDF[3] = " + str(PDF[3]) + ", bPDF[3] = " + str(bPDF[3])
        print "PDF[4] = " + str(PDF[4]) + ", bPDF[4] = " + str(bPDF[4])
        print "PDF[5] = " + str(PDF[5]) + ", bPDF[4] = " + str(bPDF[5])
        print "PDF[6] = inf, bPDF[5] = " + str(bPDF[6])
        """
        self.assertTrue(np.abs(bPDF[1] - PDF[1]) < 0.01)
        self.assertTrue(np.abs(bPDF[2] - PDF[2]) < 0.01)
        self.assertTrue(np.abs(bPDF[3] - PDF[3]) < 0.01)
        self.assertTrue(np.abs(bPDF[4] - PDF[4]) < 0.01)
        self.assertTrue(np.abs(bPDF[5] - PDF[5]) < 0.01)
        self.assertEqual(bTest, 0)
Example #2
0
    def testBetaPDF1(self):
        print "\n test Beta PDF 1: Var = 0 --> Delta PDF"
        ZPoints = 6
        ZmeanPoints = 1
        ZvarPoints = 1

        ZMin = 0
        ZMax = 1
        ZmeanMin = 0.25
        ZmeanMax = ZmeanMin
        ZvarMin = 0
        ZvarMax = ZvarMin

        # create arrays of type "double *"
        Z = np.linspace(ZMin, ZMax, ZPoints)
        Zmean = np.linspace(ZmeanMin, ZmeanMax, ZmeanPoints)
        Zvar = np.linspace(ZvarMin, ZvarMax, ZvarPoints)

        # create instances of PDF class
        b = pdf.BetaPDF(Zmean, Zvar)
        bPdfValM = matrix3d.Matrix3D(ZvarPoints, ZmeanPoints, ZPoints)
        bPDF = np.zeros(ZPoints)

        # expected PDF values
        d = pdf.DeltaPDF(Zmean)
        dPdfValM = matrix3d.Matrix3D(ZvarPoints, ZmeanPoints, ZPoints)
        dPDF = np.zeros(ZPoints)

        # calculate PDF
        bTest = b.pdfVal(Z, bPdfValM)
        dTest = d.pdfVal(Z, dPdfValM)

        # test
        for k in range(ZPoints):
            bPDF[k] = bPdfValM.GetVal(0, 0, k)
            dPDF[k] = dPdfValM.GetVal(0, 0, k)
            self.assertAlmostEqual(bPDF[k], dPDF[k])
        self.assertEqual(bTest, 0)
        self.assertEqual(dTest, 0)
Example #3
0
    def testBetaPDF1(self):
        print "\n Beta PDF 1: Zero Variance"

        ZPoints = 5
        ZmeanPoints = 1
        ZvarPoints = 1

        ZMin = 0
        ZMax = 1
        ZmeanMin = 0.25
        ZmeanMax = ZmeanMin
        ZvarMin = 0
        ZvarMax = ZvarMin

        Nodes = 50

        # create arrays of type "double *"
        Z = np.linspace(ZMin, ZMax, ZPoints)
        Zmean = np.linspace(ZmeanMin, ZmeanMax, ZmeanPoints)
        Zvar = np.linspace(ZvarMin, ZvarMax, ZvarPoints)

        # create instances of PDF class
        b = pdf.BetaPDF(Zmean, Zvar)
        bPdfValM = matrix3d.Matrix3D(ZvarPoints, ZmeanPoints, ZPoints)

        # expected PDF values
        PDF = np.zeros(ZPoints)
        PDF[1] = 1 * (ZPoints - 1)

        # calculate PDF
        test = b.pdfVal(Z, bPdfValM)
        PDFCalc = np.zeros(ZPoints)

        # test
        for k in range(ZPoints):
            PDFCalc[k] = bPdfValM.GetVal(0, 0, k)
            self.assertAlmostEqual(PDF[k], PDFCalc[k])

        # create Integrators
        Trapz = integrator.Trapz()
        Quadr = integrator.GLQuad(Nodes)

        # create Filtered Data Matrices
        postTrapz = matrix.Matrix(ZvarPoints, ZmeanPoints)
        postQuadr = matrix.Matrix(ZvarPoints, ZmeanPoints)

        # create matrix for printing
        filterTrapz = np.zeros(ZmeanPoints)
        filterQuadr = np.zeros(ZmeanPoints)

        # create test data
        testData = np.ones(ZPoints)

        # calculate filtered reaction rates
        c = convolute.convVal_func(Z, testData, bPdfValM, postTrapz, Trapz)
        c = convolute.convVal_func(Z, testData, bPdfValM, postQuadr, Quadr)

        for j in range(ZmeanPoints):
            filterTrapz[j] = postTrapz.GetVal(0, j)
            filterQuadr[j] = postQuadr.GetVal(0, j)
            self.assertEqual(filterTrapz[j], 1)
            self.assertAlmostEqual(filterQuadr[j], 1, 1)
Example #4
0
    def testBetaPDF3(self):
        print "\n Beta PDF 3: Symmetric"

        Points = 6
        ZPoints = 101
        ZmeanPoints = 1
        ZvarPoints = 1

        ZMin = 0
        ZMax = 1
        ZmeanMin = 0.5
        ZmeanMax = ZmeanMin
        ZvarMin = 0.05
        ZvarMax = ZvarMin

        Nodes = 10

        # create arrays of type "double *"
        Z = np.linspace(ZMin, ZMax, ZPoints)
        Zmean = np.linspace(ZmeanMin, ZmeanMax, ZmeanPoints)
        Zvar = np.linspace(ZvarMin, ZvarMax, ZvarPoints)

        # create instances of PDF class
        b = pdf.BetaPDF(Zmean, Zvar)
        bPdfValM = matrix3d.Matrix3D(ZvarPoints, ZmeanPoints, ZPoints)
        bPDF = np.zeros(Points)
        # expected PDF values
        PDF = np.zeros(ZPoints)
        PDF[0] = 0
        PDF[1] = 0.96
        PDF[2] = 1.44
        PDF[3] = 1.44
        PDF[4] = 0.96
        PDF[5] = 0

        # calculate PDF
        bTest = b.pdfVal(Z, bPdfValM)

        # test
        for k in range(Points):
            bPDF[k] = bPdfValM.GetVal(0, 0, 20 * k)
        """
        print "PDF[0] = inf, bPDF[0] = " + str(bPDF[0])
        print "PDF[1] = " + str(PDF[1]) + ", bPDF[1] = " + str(bPDF[1])
        print "PDF[2] = " + str(PDF[2]) + ", bPDF[2] = " + str(bPDF[2])
        print "PDF[3] = " + str(PDF[3]) + ", bPDF[3] = " + str(bPDF[3])
        print "PDF[4] = " + str(PDF[4]) + ", bPDF[4] = " + str(bPDF[4])
        print "PDF[5] = inf, bPDF[5] = " + str(bPDF[5])
        """
        self.assertTrue(np.abs(bPDF[1] - PDF[1]) < 0.2)
        self.assertTrue(np.abs(bPDF[2] - PDF[2]) < 0.2)
        self.assertTrue(np.abs(bPDF[3] - PDF[3]) < 0.2)
        self.assertTrue(np.abs(bPDF[4] - PDF[4]) < 0.2)
        self.assertEqual(bTest, 0)

        # create Integrators
        Trapz = integrator.Trapz()
        Quadr = integrator.GLQuad(Nodes)

        # create Filtered Data Matrices
        postTrapz = matrix.Matrix(ZvarPoints, ZmeanPoints)
        postQuadr = matrix.Matrix(ZvarPoints, ZmeanPoints)

        # create matrix for printing
        filterTrapz = np.zeros(ZmeanPoints)
        filterQuadr = np.zeros(ZmeanPoints)

        # create test data
        testData = np.ones(ZPoints)

        # calculate filtered reaction rates
        c = convolute.convVal_func(Z, testData, bPdfValM, postTrapz, Trapz)
        c = convolute.convVal_func(Z, testData, bPdfValM, postQuadr, Quadr)

        for j in range(ZmeanPoints):
            filterTrapz[j] = postTrapz.GetVal(0, j)
            filterQuadr[j] = postQuadr.GetVal(0, j)
            self.assertTrue(np.abs(filterTrapz[j] - 1) < 0.01)
            self.assertTrue(np.abs(filterQuadr[j] - 1) < 0.01)
Example #5
0
    Zmean = np.linspace(0, 1, int(options["Zmean grid"][0]))
Zpdf = options["Zpdf"]

# Generate pdf objects
print "Generating PDF matrix with", Zpdf[0], "PDF"
if Zpdf[0] == "delta":  # delta pdf has variance 0
    Zvar_grid = [1]
    Zvar_max = [0]
    Zvar = np.linspace(0, float(Zvar_max[0]), int(Zvar_grid[0]))
    d = pdf.DeltaPDF(Zmean)
elif Zpdf[
        0] == "beta":  # must include user specified variances for beta pdf # currently not supported
    Zvar_max = iof.read_input("Zvar_max:", inputs)
    Zvar_grid = iof.read_input("Zvar_grid:", inputs)
    Zvar = np.linspace(0, float(Zvar_max[0]), int(Zvar_grid[0]))
    d = pdf.BetaPDF(Zmean, Zvar)
else:
    raise IOError(
        "Incorrect PDF input %s, currently only DELTA and BETA are supported" %
        Zpdf[0])

    # generate PDF matrix
ZPoints = len(Z)
ZvarPoints = len(Zvar)
ZmeanPoints = len(Zmean)
pdfValM = matrix3d.Matrix3D(ZvarPoints, ZmeanPoints, ZPoints)
for i in range(ZvarPoints):
    for j in range(ZmeanPoints):
        for k in range(ZPoints):
            pdfValM.SetVal(i, j, k, 0)
pdfValReturn = d.pdfVal(Z, pdfValM)