Example #1
0
    def flow_datasets_all(self, rec_data_code='Primary'):
        """

        """
        ## Get dataset types
        datasets1 = mssql.rd_sql(param['input']['ts_server'], param['input']['ts_database'], param['input']['ts_dataset_table'], where_in={'Feature': ['River'], 'MeasurementType': ['Flow'], 'DataCode': ['Primary', 'RAW']})
        man_datasets1 = datasets1[(datasets1['CollectionType'] == 'Manual Field') & (datasets1['DataCode'] == 'Primary')].copy()
        rec_datasets1 = datasets1[(datasets1['CollectionType'] == 'Recorder') & (datasets1['DataCode'] == rec_data_code)].copy()

        ## Get ts summaries
        man_summ1 = mssql.rd_sql(param['input']['ts_server'], param['input']['ts_database'], param['input']['ts_summ_table'], ['ExtSiteID', 'DatasetTypeID', 'Min', 'Median', 'Mean', 'Max', 'Count', 'FromDate', 'ToDate'], where_in={'DatasetTypeID': man_datasets1['DatasetTypeID'].tolist()}).sort_values('ToDate')
        man_summ2 = man_summ1.drop_duplicates(['ExtSiteID'], keep='last').copy()
        man_summ2['CollectionType'] = 'Manual Field'

        rec_summ1 = mssql.rd_sql(param['input']['ts_server'], param['input']['ts_database'], param['input']['ts_summ_table'], ['ExtSiteID', 'DatasetTypeID', 'Min', 'Median', 'Mean', 'Max', 'Count', 'FromDate', 'ToDate'], where_in={'DatasetTypeID': rec_datasets1['DatasetTypeID'].tolist()}).sort_values('ToDate')
        rec_summ2 = rec_summ1.drop_duplicates(['ExtSiteID'], keep='last').copy()
        rec_summ2['CollectionType'] = 'Recorder'

        ## Combine
        summ2 = pd.concat([man_summ2, rec_summ2], sort=False)

        summ2['FromDate'] = pd.to_datetime(summ2['FromDate'])
        summ2['ToDate'] = pd.to_datetime(summ2['ToDate'])

        ## Add in site info
        sites1 = mssql.rd_sql(param['input']['ts_server'], param['input']['ts_database'], param['input']['sites_table'], ['ExtSiteID', 'NZTMX', 'NZTMY', 'SwazGroupName', 'SwazName'])

        summ3 = pd.merge(summ2, sites1, on='ExtSiteID')

        ## Assign objects
        setattr(self, 'sites', sites1)
        setattr(self, 'rec_data_code', rec_data_code)
        setattr(self, 'summ_all', summ3)
Example #2
0
def test_del_rows():
    ## Write table
    mssql.to_mssql(df1, server, database, table)

    ## Read table
    beta1 = mssql.rd_sql(server, database, table)

    ## Delete parts
    mssql.del_mssql_table_rows(server, database, table, pk_df=df2)

    ## Test
    beta2 = mssql.rd_sql(server, database, table)
    beta3 = beta1.set_index(['pk1', 'pk2'])
    beta3.index.isin(df2.set_index(['pk1', 'pk2']).index)
    beta4 = beta3.loc[~beta3.index.isin(df2.set_index(['pk1', 'pk2']).index)].reset_index()

    ## Remove table
    engine = mssql.create_engine('mssql', server, database)
    conn = engine.connect()
    trans = conn.begin()
    conn.execute("IF OBJECT_ID(" + str([str(table)])[1:-1] + ", 'U') IS NOT NULL drop table " + table)
    trans.commit()
    conn.close()

    assert all(beta2 == beta4)
Example #3
0
def create_site_mtype(server, database, site, ref_point, new_mtype):
    """
    Function to create a new mtype for a specific site. A reference point number of an existing mtype of the same site must be used for creation. Run get_sites_mtypes to find a good reference point.

    Parameters
    ----------
    server : str
        The server where the Hydrotel database lays.
    database : str
        The name of the Hydrotel database.
    site : str
        The site to create the new mtype on.
    ref_point : int
        The reference point from another mtype on the same site.
    new_mtype : str
        The new mtype name. Must be unique for the associated site.

    Returns
    -------
    DataFrame
        New object and point values extracted by the get_sites_mtypes function.
    """
    ## Checks
    site_mtypes = get_sites_mtypes(server, database, sites=site).reset_index()

    if not (site_mtypes.Point == ref_point).any():
        raise ValueError('model_point must be a Point that exists within the mtypes of the site')
    if (site_mtypes.MType == new_mtype.lower()).any():
        raise ValueError('new_name already exists as an mtype, please use a different name')

    ## Import object/point data
    point_val = rd_sql(server, database, points_tab, where_in={'Point': [ref_point]})
    obj_val = rd_sql(server, database, objects_tab, where_in={'Object': point_val.Object.tolist()})

    treeindex1 = int(rd_sql(server, database, stmt='select max(TreeIndex) from {tab} where Site = {site}'.format(tab=objects_tab, site=int(obj_val.Site))).iloc[0])

    ## Assign new object data
    obj_val2 = obj_val.drop('Object', axis=1).copy()
    obj_val2['Name'] = new_mtype
    obj_val2['TreeIndex'] = treeindex1 + 1

    to_mssql(obj_val2, server, database, objects_tab)

    ## Find out what the new object value is
    new_obj = int(rd_sql(server, database, objects_tab, where_in={'Site': obj_val.Site.tolist(), 'Name': [new_mtype]}).Object)

    ## Assign new point data
    point_val2 = point_val.drop('Point', axis=1).copy()
    point_val2['Name'] = new_mtype
    point_val2['Object'] = new_obj

    to_mssql(point_val2, server, database, points_tab)

    ## Return new values
    site_mtypes = get_sites_mtypes(server, database, sites=site, mtypes=new_mtype)

    return site_mtypes
Example #4
0
def telem_corr_sites(site_num=None, username=None, password=None):
    """
    Function to determine if sites are telemetered or are correlated from telemetered sites in Hydrotel. Output is a list of correlated sites.

    Parameters
    ----------
    site_num: list of str
        Site numbers for the selection.

    Returns
    -------
    List of str
        List of site numbers that are correlated sites.
    """
    ### Parameters
    sites_tab = 'Sites'
    obj_tab = 'Objects'

    sites_fields = ['Site', 'ExtSysID']
    obj_fields = ['Site', 'Name']

    where_dict = {'Name': ['calculated flow']}

    ### Read in data
    if isinstance(site_num, list):
        sites = rd_sql(hydrotel_server,
                       hydrotel_db,
                       sites_tab,
                       sites_fields, {'ExtSysID': site_num},
                       username=username,
                       password=password)
        sites['ExtSysID'] = pd.to_numeric(sites['ExtSysID'], 'coerce')
    else:
        sites = rd_sql(hydrotel_server,
                       hydrotel_db,
                       sites_tab,
                       sites_fields,
                       username=username,
                       password=password)
        sites['ExtSysID'] = pd.to_numeric(sites['ExtSysID'], 'coerce')
        sites = sites[sites.ExtSysID.notnull()]

    sites['Site'] = sites['Site'].astype('int32')

    where_dict.update({'Site': sites.Site.tolist()})

    obj = rd_sql(hydrotel_server,
                 hydrotel_db,
                 obj_tab,
                 obj_fields,
                 where_dict,
                 username=username,
                 password=password)
    corr_sites = sites[sites.Site.isin(obj.Site)]

    return corr_sites.ExtSysID.astype('int32').astype(str).tolist()
Example #5
0
def download_tsdata(sites, bands, start_date, end_date):

    if not sites or bands is None:
        return ''

    sites1 = [str(s) for s in sites]

    if isinstance(bands, int):
        bands = [bands]

    ts1 = mssql.rd_sql(server,
                       db,
                       lf_site_band_table,
                       where_col={
                           'site': sites1,
                           'band_num': bands
                       },
                       from_date=start_date,
                       to_date=end_date,
                       date_col='date')

    csv_string = ts1.to_csv(index=False, encoding='utf-8')
    csv_string = "data:text/csv;charset=utf-8," + urllib.parse.quote(
        csv_string)
    return csv_string
Example #6
0
def update_band_options(sites, clickdata, end_date, select1):
    if not sites:
        options1 = []
    elif select1 == 'band':
        sites1 = [str(s) for s in sites]
        site_bands = mssql.rd_sql(
            server,
            db,
            lf_site_band_table, ['band_num', 'band_name', 'site_type'],
            where_col={
                'site': sites1
            },
            from_date=end_date,
            to_date=end_date,
            date_col='date').drop_duplicates(['band_name'])
        site_bands['label'] = site_bands['band_name'] + ' - ' + site_bands[
            'site_type']
        site_bands1 = site_bands.rename(columns={
            'band_num': 'value'
        }).drop(['band_name', 'site_type'], axis=1)
        options1 = site_bands1.to_dict('records')


#    elif select1 == 'consent':

#    print(options1)
    return options1
Example #7
0
def app_ts_summ(server, database, features, mtypes, ctypes, data_codes,
                data_providers):
    """

    """
    ## Get TS summary
    ecan_summ = ecan_ts_summ(server, database, features, mtypes, ctypes,
                             data_codes, data_providers)

    ## Dataset name
    ecan_summ[
        'Dataset Name'] = ecan_summ.Feature + ' - ' + ecan_summ.MeasurementType + ' - ' + ecan_summ.CollectionType + ' - ' + ecan_summ.DataCode + ' - ' + ecan_summ.DataProvider + ' (' + ecan_summ.Units + ')'

    ## Get site info
    sites = mssql.rd_sql(server, database, sites_table, sites_cols)
    sites['NZTMX'] = sites['NZTMX'].astype(int)
    sites['NZTMY'] = sites['NZTMY'].astype(int)

    # Hover text
    sites.loc[sites.ExtSiteName.isnull(), 'ExtSiteName'] = ''

    sites['hover'] = sites.ExtSiteID + '<br>' + sites.ExtSiteName.str.strip()

    # Convert projections
    xy1 = list(zip(sites['NZTMX'], sites['NZTMY']))
    x, y = list(zip(*[transform(from_crs, to_crs, x, y) for x, y in xy1]))

    sites['lon'] = x
    sites['lat'] = y

    ## Combine with everything
    ts_summ = pd.merge(sites, ecan_summ, on='ExtSiteID')

    return ts_summ
Example #8
0
def rd_lf_crc(SiteID=None,
              BandNumber=None,
              RecordNumber=None,
              username=None,
              password=None):
    """
    tagLowFlow table.
    """
    where_in1 = util.where_gen(SiteID, 'SiteID')
    where_in2 = util.where_gen(BandNumber, 'BandNo', where_in1)
    where_in = util.where_gen(RecordNumber, 'RecordNo', where_in2)

    crc = rd_sql(lf_server,
                 lf_db,
                 crc_table,
                 crc_fields,
                 where_in=where_in,
                 rename_cols=crc_names,
                 username=username,
                 password=password)

    ## clean
    crc['RecordNumber'] = crc['RecordNumber'].str.strip().str.upper()
    crc1 = crc.drop_duplicates()

    ## Return
    return crc1
Example #9
0
def get_mtypes(server, database):
    """
    Function to return a Series of measurement types that can be passed to get_sites_mtypes and get_ts_data. Returns with a count of the frequency the values exist in the database and is sorted by the count.

    Remember, SQL is not case sensitive. The MTypes returned will have different cases, but these differences do not matter for the other functions.

    Parameters
    ----------
    server : str
        The server where the Hydrotel database lays.
    database : str
        The name of the Hydrotel database.
    mtypes : str or list of str
        The measurement type(s) of the sites that should be returned.
    sites : list of str or None
        The list of sites that should be returned. None returns all sites.

    Returns
    -------
    Series
        MType (index), count
    """
    objects1 = rd_sql(server, database, objects_tab, objects_col)
    objects2 = objects1.groupby('Name').Site.count().sort_values(ascending=False)
    objects2.name = 'count'
    objects2.index.name = 'MType'

    return objects2
Example #10
0
def rd_lf_db_log(SiteID=None,
                 from_date=None,
                 to_date=None,
                 LogResult=None,
                 username=None,
                 password=None):
    """
    LowFlowSiteRefDBaseReadSite table.
    """
    if to_date is None:
        to_date = str(date.today())

    where_in1 = util.where_gen(SiteID, 'SiteID')
    where_in = util.where_gen(LogResult, 'Result', where_in1)

    db_log = rd_sql(lf_server,
                    lf_db,
                    db_log_table,
                    db_log_fields,
                    where_in=where_in,
                    from_date=from_date,
                    to_date=to_date,
                    date_col='forDate',
                    rename_cols=db_log_names,
                    username=username,
                    password=password).drop_duplicates(['SiteID', 'RestrDate'])

    ## Return
    return db_log.set_index(['SiteID', 'RestrDate']).sort_index()
Example #11
0
def rd_lf_site_type(SiteID=None,
                    BandNumber=None,
                    SiteType=None,
                    only_active=None,
                    username=None,
                    password=None):
    """
    LowFlowSiteBand table.
    """
    where_in1 = util.where_gen(SiteID, 'SiteID')
    where_in2 = util.where_gen(BandNumber, 'BandNo', where_in1)
    where_in3 = util.where_gen(only_active, 'isActive', where_in2)
    where_in = util.where_gen(SiteType, 'RestrictionType', where_in3)

    site_type = rd_sql(lf_server,
                       lf_db,
                       site_type_table,
                       site_type_fields,
                       where_in=where_in,
                       rename_cols=site_type_names,
                       username=username,
                       password=password)

    ## clean
    site_type['BandName'] = site_type['BandName'].str.strip()
    site_type['SiteType'] = site_type['SiteType'].str.strip().str.title()

    ## Return
    return site_type.set_index(['SiteID', 'BandNumber']).sort_index()
Example #12
0
def rd_lf_restr_ts(SiteID=None,
                   BandNumber=None,
                   from_date=None,
                   to_date=None,
                   username=None,
                   password=None):
    """
    LowFlowSiteRestrictionDaily table.
    """
    #    where_in1 = util.where_gen('Live', 'SnapshotType')
    where_in2 = util.where_gen(SiteID, 'SiteID')
    where_in = util.where_gen(BandNumber, 'BandNo', where_in2)

    restr_ts = rd_sql(lf_server,
                      lf_db,
                      restr_table,
                      restr_fields,
                      where_in=where_in,
                      rename_cols=restr_names,
                      from_date=from_date,
                      to_date=to_date,
                      date_col='RestrictionDate',
                      username=username,
                      password=password).sort_values('SnapshotType')

    ## clean
    restr_ts.drop_duplicates(['SiteID', 'BandNumber', 'RestrDate'],
                             inplace=True)

    ## Return
    return restr_ts.drop('SnapshotType', axis=1).set_index(
        ['SiteID', 'BandNumber', 'RestrDate']).sort_index()
    def _lowflow_data(self):
        """

        """
        if hasattr(self, 'lf_restr_daily'):
            lf_crc2 = self.lf_restr_daily
        else:
            ## Pull out the lowflows data
            lf_crc1 = mssql.rd_sql(
                self.crc_server,
                self.crc_db,
                param.lf_table,
                ['RecordNumber', 'AllocationBlock', 'RestrDate', 'Allocation'],
                where_in={
                    'RecordNumber':
                    self.allo.index.levels[0].unique().tolist()
                },
                from_date=self.from_date,
                to_date=self.to_date,
                date_col='RestrDate')
            lf_crc1.rename(columns={'RestrDate': 'Date'}, inplace=True)
            lf_crc1.Date = pd.to_datetime(lf_crc1.Date)

            ## Aggregate to the crc and date - min restr ratio
            lf_crc2 = util.grp_ts_agg(lf_crc1, 'RecordNumber', 'Date',
                                      'D')['Allocation'].min() * 0.01
            lf_crc2.name = 'restr_ratio'

            setattr(self, 'lf_restr_daily', lf_crc2)

        ### Aggregate to the appropriate freq
        lf_crc3 = util.grp_ts_agg(lf_crc2.reset_index(), 'RecordNumber',
                                  'Date', self.freq)['restr_ratio'].mean()

        setattr(self, 'lf_restr', lf_crc3)
Example #14
0
def load_geo_data(data):
    """
    Function to load or pass geometry data as a GeoDataFrame.

    Parameters
    ----------
    data : str, dict, or GeoDataFrame
        Must be either a shapefile path (as str), a GeoDataFrame, or a dict of parameters to be passed to pdsql.mssql.rd_sql.

    Returns
    -------
    GeoDataFrame
    """
    if isinstance(data, gpd.GeoDataFrame):
        gpd1 = data.copy()
    elif isinstance(data, str):
        if data.endswith('shp'):
            gpd1 = gpd.read_file(data)
        else:
            raise ValueError(
                'If input is a str, then it must be a path to a shapefile.')
    elif isinstance(data, dict):
        data1 = data.copy()
        data1.update({'geo_col': True})
        gpd1 = mssql.rd_sql(**data1)

    return gpd1
Example #15
0
def get_limit_data(pl_server, pl_db, limit_table, username, password):
    """

    """
    lim1 = mssql.rd_sql(pl_server, pl_db, limit_table, ['ManagementGroupID', 'PlanName', 'PlanSection', 'PlanTable', 'LimitUnits', 'LimitParameterName', 'LimitParameterType', 'FromMonth', 'ToMonth', 'Limit'], username=username, password=password)

    return lim1
Example #16
0
    def load_rec(self):
        """

        """
        if not hasattr(self, 'rec_rivers'):
            sql1 = sql_arg()

            rec_rivers_dict = sql1.get_dict(param['input']['rec_rivers_sql'])
            rec_catch_dict = sql1.get_dict(param['input']['rec_catch_sql'])

            rec_rivers = mssql.rd_sql(**rec_rivers_dict)
            rec_catch = mssql.rd_sql(**rec_catch_dict)

            setattr(self, 'rec_rivers', rec_rivers)
            setattr(self, 'rec_catch', rec_catch)

        pass
Example #17
0
def lf_site_summ(server, database, from_date, to_date):
    site_summ = mssql.rd_sql(
        server,
        database,
        lf_site_table, [
            'site', 'date', 'site_type', 'flow_method', 'days_since_flow_est',
            'flow', 'crc_count', 'min_trig', 'max_trig', 'restr_category'
        ],
        from_date=from_date,
        to_date=to_date,
        date_col='date',
        rename_cols=[
            'ExtSite', 'Date', 'Site type', 'Data source',
            'Days since last estimate', 'Flow or water level', 'Crc count',
            'Min trigger', 'Max trigger', 'Restriction category'
        ])
    sites1 = site_summ.ExtSiteID.unique().tolist()

    ## Get site info
    sites = mssql.rd_sql(server,
                         database,
                         sites_table,
                         ['ExtSiteID', 'ExtSiteName', 'NZTMX', 'NZTMY'],
                         where_in={'ExtSiteID': sites1})
    sites['NZTMX'] = sites['NZTMX'].astype(int)
    sites['NZTMY'] = sites['NZTMY'].astype(int)

    sites.loc[sites.ExtSiteName.isnull(), 'ExtSiteName'] = ''

    # Convert projections
    xy1 = list(zip(sites['NZTMX'], sites['NZTMY']))
    x, y = list(zip(*[transform(from_crs, to_crs, x, y) for x, y in xy1]))

    sites['lon'] = x
    sites['lat'] = y

    combo = pd.merge(sites, site_summ, on='ExtSiteID')

    # Hover text
    combo['hover'] = combo.ExtSiteID + '<br>' + combo.ExtSiteName.str.strip(
    ) + '<br>' + combo['Data source'] + ' ' + combo[
        'Days since last estimate'].astype(str) + ' day(s) ago'

    return combo
    def _process_usage(self):
        """

        """
        ### Get the ts summary tables
        if not hasattr(self, 'ts_usage_summ'):
            self._usage_summ()
        ts_usage_summ = self.ts_usage_summ.copy()

        ## Get the ts data and aggregate
        if hasattr(self, 'usage_ts_daily'):
            tsdata1 = self.usage_ts_daily
        else:
            tsdata1 = mssql.rd_sql(
                self.ts_server,
                self.ts_db,
                param.ts_table, ['ExtSiteID', 'DateTime', 'Value'],
                where_in={
                    'ExtSiteID': ts_usage_summ.Wap.unique().tolist(),
                    'DatasetTypeID':
                    ts_usage_summ.DatasetTypeID.unique().tolist()
                },
                from_date=self.from_date,
                to_date=self.to_date,
                date_col='DateTime')

            tsdata1['DateTime'] = pd.to_datetime(tsdata1['DateTime'])
            tsdata1.rename(columns={
                'DateTime': 'Date',
                'ExtSiteID': 'Wap',
                'Value': 'TotalUsage'
            },
                           inplace=True)

            ### filter - remove individual spikes and negative values
            tsdata1.loc[tsdata1['TotalUsage'] < 0, 'TotalUsage'] = 0

            def remove_spikes(x):
                val1 = bool(x[1] > (x[0] + x[2] + 2))
                if val1:
                    return (x[0] + x[2]) / 2
                else:
                    return x[1]

            tsdata1.iloc[1:-1, 2] = tsdata1['TotalUsage'].rolling(
                3, center=True).apply(remove_spikes, raw=True).iloc[1:-1]

            setattr(self, 'usage_ts_daily', tsdata1)

        ### Aggregate
        tsdata2 = util.grp_ts_agg(tsdata1, 'Wap', 'Date', self.freq).sum()

        setattr(self, 'usage_ts', tsdata2)
Example #19
0
def rd_sites(where_in=None):
    """
    where_in : dict
        The keys should be the column names and the values should be a list of values on those columns.
    """
    ### Site and attributes
    sites = mssql.rd_sql(param.hydro_server,
                         param.hydro_database,
                         param.site_table,
                         param.site_cols,
                         where_in=where_in)
    sites1 = sites[sites.ExtSiteID.str.contains('[A-Z]+\d\d/\d+')].copy()

    return sites1.set_index('ExtSiteID')
Example #20
0
def get_consent_conditions(site_id):
    """This function extracts consent conditions for a site of interest""" 
    # Read table of consent conditions and convert to a pandas dataframe (Ecan)
    server = 'edwprod01'
    database = 'ConsentsReporting'
    table = 'reporting.CrcActSiteSumm'
    crc_table = sq.rd_sql(server, database, table)
    # Extract the active consents for the specified site
    consents = crc_table.loc[(crc_table['ExtSiteID'] == site_id) & (crc_table['ConsentStatus'] == 'Issued - Active')]
    # If there are no active consents, extract the most recent consent for the specified site
    if len(consents) == 0:
        all_consents = crc_table.loc[(crc_table['ExtSiteID'] == site_id)]
        most_recent = all_consents['ToDate'].max()
        consents = all_consents.loc[all_consents['ToDate'] == most_recent]
    return consents
Example #21
0
def rd_allo(from_date='1900-07-01',
            to_date='2020-06-30',
            where_in=None,
            include_hydroelectric=False):
    """
    Function to filter consents..

    Parameters
    ----------
    from_date : str
        The start date for the time series.
    to_date: str
        The end date for the time series.
    where_in : dict
        The keys should be the column names and the values should be a list of values on those columns.

    Returns
    -------
    DataFrame
        Allocation
    """
    ### allocation
    allo1 = mssql.rd_sql(param.crc_server,
                         param.crc_database,
                         param.allo_table,
                         param.allo_cols,
                         where_in=where_in)
    allo1 = allo1[allo1.ConsentStatus.isin(param.status_codes)].copy()
    if not include_hydroelectric:
        allo1 = allo1[allo1.WaterUse != 'hydroelectric']

    ### Time series filtering
    allo1.loc[:, 'ToDate'] = pd.to_datetime(allo1.loc[:, 'ToDate'],
                                            errors='coerce')
    allo1.loc[:, 'FromDate'] = pd.to_datetime(allo1.loc[:, 'FromDate'],
                                              errors='coerce')
    #    allo1 = allo1[(allo1['ToDate'] - pd.Timestamp(from_date)).dt.days > 31]
    #    allo1 = allo1[(pd.Timestamp(to_date) - allo2['FromDate']).dt.days > 31]
    allo1 = allo1[(allo1['ToDate'] - allo1['FromDate']).dt.days > 10]
    allo2 = allo1[(allo1.FromDate < to_date)
                  & (allo1.ToDate > from_date)].copy()

    ### Index the DataFrame
    allo2.set_index(
        ['RecordNumber', 'HydroFeature', 'AllocationBlock', 'ExtSiteID'],
        inplace=True)

    return allo2
    def upstream_takes(self):
        """
        Function to determine the upstream water abstraction sites from the catchment delineation.

        Returns
        -------
        DataFrame
            allocation data
        """
        if not hasattr(self, 'catch_gdf'):
            catch_gdf = self.catch_del()

        ### WAP selection
        wap1 = mssql.rd_sql(self.permit_server, param['input']['permit_database'], param['input']['crc_wap_table'], ['ExtSiteID'], where_in={'ConsentStatus': param['input']['crc_status']}).ExtSiteID.unique()

        sites3 = self.sites[self.sites.ExtSiteID.isin(wap1)].copy()
        sites3.rename(columns={'ExtSiteID': 'Wap'}, inplace=True)

        sites4 = vector.xy_to_gpd('Wap', 'NZTMX', 'NZTMY', sites3)
        sites4 = sites4.merge(sites3.drop(['NZTMX', 'NZTMY'], axis=1), on='Wap')

        waps_gdf, poly1 = vector.pts_poly_join(sites4, catch_gdf, 'ExtSiteID')
        waps_gdf.dropna(subset=['SwazName', 'SwazGroupName'], inplace=True)

        ### Get crc data
        if waps_gdf.empty:
            print('No WAPs were found in the polygon')
            allo_wap = pd.DataFrame()
        else:
            allo1 = AlloUsage(crc_filter={'ExtSiteID': waps_gdf.Wap.unique().tolist(), 'ConsentStatus': param['input']['crc_status']}, from_date=self.from_date, to_date=self.to_date)

            allo_wap1 = allo1.allo.copy()
            allo_wap = pd.merge(allo_wap1.reset_index(), waps_gdf[['Wap', 'ExtSiteID']], on='Wap')

            ## Save if required
            if hasattr(self, 'output_path'):
                run_time = pd.Timestamp.today().strftime('%Y-%m-%dT%H%M')

                waps_shp = param['output']['waps_shp'].format(run_date=run_time)
                waps_gdf.to_file(os.path.join(self.output_path, waps_shp))

                allo_data_csv = param['output']['allo_data_csv'].format(run_date=run_time)
                allo_wap.to_csv(os.path.join(self.output_path, allo_data_csv), index=False)

        ## Return
        setattr(self, 'waps_gdf', waps_gdf)
        setattr(self, 'allo_wap', allo_wap)
        return allo_wap
Example #23
0
def usm_sites(ExtSiteID=None, username=None, password=None):
    """
    USM Site table.
    """
    where_in = util.where_gen(ExtSiteID, 'UpstreamSiteID')

    usm_sites1 = rd_sql(usm_server,
                        usm_db,
                        usm_sites_table,
                        usm_fields,
                        where_in=where_in,
                        rename_cols=usm_names,
                        username=username,
                        password=password).round()

    return usm_sites1
def rd_sites(where_in=None):
    """
    where_in : dict
        The keys should be the column names and the values should be a list of values on those columns.
    """
    ### Site and attributes
    cols = ['ExtSiteID', 'NZTMX', 'NZTMY']
    if isinstance(where_in, dict):
        for k in where_in:
            if not k in cols:
                cols.extend([k])
    elif where_in is not None:
        raise ValueError('where_in should either be None or a dict')
    sites = mssql.rd_sql(server, hydro_db, site_table, cols, where_in=where_in)
    sites1 = sites[sites.ExtSiteID.str.contains('[A-Z]+\d\d/\d+')].copy()

    return sites1
Example #25
0
def rd_lf_periods(SiteID=None, BandNumber=None, username=None, password=None):
    """
    LowFlowSiteBandPeriod table.
    """
    where_in1 = util.where_gen(SiteID, 'SiteID')
    where_in = util.where_gen(BandNumber, 'BandNo', where_in1)

    periods = rd_sql(lf_server,
                     lf_db,
                     period_table,
                     period_fields,
                     where_in=where_in,
                     rename_cols=period_names,
                     username=username,
                     password=password)

    ## Return
    return periods
def get_limit_data(pl_server, pl_db, limit_table):
    """

    """
    lim1 = mssql.rd_sql(
        pl_server,
        pl_db,
        limit_table, [
            'ManagementGroupID', 'PlanName', 'PlanSection', 'PlanTable',
            'LimitUnits', 'LimitParameterName', 'LimitParameterType',
            'FromMonth', 'ToMonth', 'Limit'
        ],
        username='******',
        password='******')

    #    gw_lim = lim1[lim1.Groundwater].drop(['Groundwater', 'SurfaceWater'], axis=1).copy()
    #    sw_lim = lim1[lim1.SurfaceWater].drop(['Groundwater', 'SurfaceWater'], axis=1).copy()

    return lim1
Example #27
0
def rd_lf_sites(SiteID=None, ExtSiteID=None, username=None, password=None):
    """
    LowFlowSite table.
    """
    where_in1 = util.where_gen(SiteID, 'SiteID')
    where_in = util.where_gen(ExtSiteID, 'RefDBaseKey', where_in1)

    sites = rd_sql(lf_server,
                   lf_db,
                   lf_sites_table,
                   lf_sites_fields,
                   where_in=where_in,
                   rename_cols=lf_sites_names,
                   username=username,
                   password=password)

    ## Clean
    sites['ExtSiteID'] = sites['ExtSiteID'].str.upper()

    ## Return
    return sites
    def _usage_summ(self):
        """

        """
        ### Get the ts summary tables
        ts_summ1 = mssql.rd_sql(
            self.ts_server, self.ts_db, param.ts_summ_table,
            ['ExtSiteID', 'DatasetTypeID', 'FromDate', 'ToDate'],
            {'DatasetTypeID': list(param.dataset_dict.keys())})
        ts_summ2 = ts_summ1[ts_summ1.ExtSiteID.isin(self.waps)].copy()
        #        ts_summ2['HydroFeature'] = ts_summ2['DatasetTypeID']
        #        ts_summ2.replace({'HydroFeature': param.dataset_dict}, inplace=True)
        ts_summ2.rename(columns={'ExtSiteID': 'Wap'}, inplace=True)

        ts_summ2['FromDate'] = pd.to_datetime(ts_summ2['FromDate'])
        ts_summ2['ToDate'] = pd.to_datetime(ts_summ2['ToDate'])

        ts_summ3 = ts_summ2[(ts_summ2.FromDate < self.to_date)
                            & (ts_summ2.ToDate > self.from_date)].copy()

        setattr(self, 'ts_usage_summ', ts_summ3)
def rd_crc(where_in=None,
           from_date='1900-07-01',
           to_date='2100-06-30',
           include_hydroelectric=False):
    """
    Function to filter consents..

    Parameters
    ----------
    from_date : str
        The start date for the time series.
    to_date: str
        The end date for the time series.
    where_in : dict
        The keys should be the column names and the values should be a list of values on those columns.

    Returns
    -------
    DataFrame
        Allocation
    """
    ### allocation
    allo1 = mssql.rd_sql(server, crc_db, crc_table, where_in=where_in)
    if not include_hydroelectric:
        allo1 = allo1[allo1.WaterUse != 'hydroelectric']

    ### Time series filtering
    allo1.loc[:, 'ToDate'] = pd.to_datetime(allo1.loc[:, 'ToDate'],
                                            errors='coerce')
    allo1.loc[:, 'FromDate'] = pd.to_datetime(allo1.loc[:, 'FromDate'],
                                              errors='coerce')
    allo1 = allo1[(allo1['ToDate'] - allo1['FromDate']).dt.days > 10]
    allo2 = allo1[(allo1.FromDate < to_date)
                  & (allo1.ToDate > from_date)].copy()

    # ### Index the DataFrame
    # allo2.set_index(['RecordNumber', 'HydroGroup', 'AllocationBlock', 'ExtSiteID'], inplace=True)

    return allo2
Example #30
0
def rd_lf_last_reading_from_date(from_date,
                                 SiteID=None,
                                 username=None,
                                 password=None):
    """
    """
    if SiteID is None:
        site_str = ''
    elif isinstance(SiteID, (str, int)):
        site_str = ' and SiteID = ' + str(SiteID)
    elif isinstance(SiteID, list):
        site_str = ' and SiteID in ({})'.format(', '.join(
            [str(i) for i in SiteID]))

    stmt1 = ass_stmt.format(date=from_date, site=site_str)
    df1 = rd_sql(lf_server,
                 lf_db,
                 stmt=stmt1,
                 username=username,
                 password=password)

    return df1