Example #1
0
 def test_run_niter2(self):
     modified_fire1 = ModifiedFireCPP(_xrand, _EG())
     res1 = modified_fire1.run()
     modified_fire2 = ModifiedFireCPP(_xrand, _EG())
     res2 = modified_fire2.run(res1.nsteps // 2)
     res2 = modified_fire2.run()
     self.assert_same(res1, res2)
Example #2
0
 def test_run_niter3(self):
     modified_fire1 = ModifiedFireCPP(_xrand, _EG())
     res1 = modified_fire1.run(10)
     modified_fire2 = ModifiedFireCPP(_xrand, _EG())
     res2 = modified_fire2.run(5)
     res2 = modified_fire2.run(5)
     self.assert_same(res1, res2)
Example #3
0
 def setUp(self):
     np.random.seed(42)
     self.L_mobile = 4
     self.L_total = self.L_mobile + 2
     self.nr_particles_mobile = self.L_mobile * self.L_mobile
     self.nr_particles_total = self.L_total * self.L_total
     self.nr_particles_frozen = self.nr_particles_total - self.nr_particles_mobile
     self.box_dimension = 2
     self.ndof = self.nr_particles_total * self.box_dimension
     self.n_frozen_dof = self.nr_particles_frozen * self.box_dimension
     self.frozen_dof = []
     self.frozen_atoms = []
     for particle_index in range(self.nr_particles_total):
         xmean = int(particle_index % self.L_total)
         ymean = int(particle_index / self.L_total)
         if ymean == 0 or ymean == self.L_total - 1 or xmean == 0 or xmean == self.L_total - 1:
             self.frozen_dof.append(particle_index * self.box_dimension)
             self.frozen_dof.append(particle_index * self.box_dimension + 1)
             self.frozen_atoms.append(particle_index)
     self.eps = 1
     self.x = np.zeros(self.ndof)
     for p in range(self.nr_particles_total):
         xmean = int(p % self.L_total)
         ymean = int(p / self.L_total)
         self.x[p * self.box_dimension] = xmean + 0.1 * np.random.rand()
         self.x[p * self.box_dimension + 1] = ymean + 0.1 * np.random.rand()
     self.radii = np.asarray([0.3 + 0.01 * np.random.rand() for _ in range(self.nr_particles_total)])
     self.sca = 1
     self.rcut = 2 * (1 + self.sca) * np.amax(self.radii)
     self.boxvec = (self.L_total + self.rcut) * np.ones(self.box_dimension)
     self.pot_cells_N_frozen_N = HS_WCA(eps=self.eps, sca=self.sca,
                                 radii=self.radii, ndim=self.box_dimension,
                                 boxvec=self.boxvec, use_periodic=True,
                                 use_frozen=False, use_cell_lists=False)
     self.pot_cells_Y_frozen_N = HS_WCA(eps=self.eps, sca=self.sca,
                                 radii=self.radii, ndim=self.box_dimension,
                                 boxvec=self.boxvec, use_periodic=True,
                                 use_frozen=False, use_cell_lists=True,
                                 reference_coords=self.x, rcut=self.rcut)
     self.pot_cells_N_frozen_Y = HS_WCA(eps=self.eps, sca=self.sca,
                                 radii=self.radii, ndim=self.box_dimension,
                                 boxvec=self.boxvec, use_periodic=True,
                                 use_frozen=True, use_cell_lists=False,
                                 frozen_atoms=self.frozen_atoms,
                                 reference_coords=self.x)
     self.pot_cells_Y_frozen_Y = HS_WCA(eps=self.eps, sca=self.sca,
                                 radii=self.radii, ndim=self.box_dimension,
                                 boxvec=self.boxvec, use_periodic=True,
                                 use_frozen=True, use_cell_lists=True,
                                 reference_coords=self.x,
                                 frozen_atoms=self.frozen_atoms, rcut=self.rcut)
     self.x_red = []
     for atom in range(self.nr_particles_total):
         if atom not in self.frozen_atoms:
             self.x_red.extend(self.x[atom * self.box_dimension : (atom + 1) * self.box_dimension])
     self.opt_NN = ModifiedFireCPP(self.x, self.pot_cells_N_frozen_N)
     self.opt_YN = ModifiedFireCPP(self.x, self.pot_cells_Y_frozen_N)
     self.opt_NY = ModifiedFireCPP(self.x_red, self.pot_cells_N_frozen_Y)
     self.opt_YY = ModifiedFireCPP(self.x_red, self.pot_cells_Y_frozen_Y)
Example #4
0
 def do_check(self, pot, **kwargs):
     modified_fire = ModifiedFireCPP(np.zeros(4), pot, stepback=True, **kwargs)
     modified_fire.run()
     modified_fire.reset(_xrand)
     res = modified_fire.run()
     self.assertAlmostEqual(res.energy, _emin, 4)
     self.assertTrue(res.success)
     self.assertLess(np.max(np.abs(res.coords - _xmin)), 1e-2)
     self.assertGreater(res.nfev, 0)
Example #5
0
    def test_event_raise(self):
        class EventException(BaseException):
            pass

        def myevent(*args, **kwargs):
            raise EventException

        with self.assertRaises(EventException):
            modified_fire = ModifiedFireCPP(_xrand, _EG(), events=[myevent])
            modified_fire.run()
Example #6
0
 def test_raises(self):
     pot = _lj_cpp._ErrorPotential()
     with self.assertRaises(RuntimeError):
         modified_fire = ModifiedFireCPP(_xrand, pot)
         modified_fire.run()
Example #7
0
 def test_raises(self):
     with self.assertRaises(NotImplementedError):
         modified_fire = ModifiedFireCPP(_xrand, _Raise())
         modified_fire.run()
Example #8
0
def modifiedfire_cpp(coords, pot, **kwargs):
    modifiedfire = ModifiedFireCPP(coords, pot, **kwargs)
    return modifiedfire.run()
Example #9
0
    def optimize(self, nr_samples=1):
        self.x_initial_red = reduce_coordinates(self.x_initial,
                                                self.frozen_atoms, self.ndim)
        self.optimizer = ModifiedFireCPP(self.x_initial_red.copy(),
                                         self.potential,
                                         tol=self.tol,
                                         maxstep=self.maxstep)
        self.optimizer_ = LBFGS_CPP(self.x_initial_red.copy(), self.potential)
        self.optimizer_cells = ModifiedFireCPP(self.x_initial_red.copy(),
                                               self.potential_cells,
                                               tol=self.tol,
                                               maxstep=self.maxstep)
        self.optimizer_cells_ = LBFGS_CPP(self.x_initial_red.copy(),
                                          self.potential_cells)
        t0 = time.time()
        print "self.optimizer.run(self.nstepsmax)", self.nstepsmax
        self.optimizer.run(self.nstepsmax)
        self.res_x_final = self.optimizer.get_result()
        t1 = time.time()
        self.optimizer_cells.run(self.nstepsmax)
        self.res_x_final_cells = self.optimizer_cells.get_result()
        t2 = time.time()

        self.x_final = self.res_x_final.coords
        self.x_final_cells = self.res_x_final_cells.coords
        print "fire final E, x:", self.optimizer.get_result().energy
        print "fire final E, x_cells:", self.optimizer_cells.get_result(
        ).energy
        print "fire final E, plain: ", self.potential.getEnergy(self.x_final)
        print "fire final E, cell: ", self.potential_cells.getEnergy(
            self.x_final_cells)
        print "fire number of particles:", self.N
        print "fire time no cell lists:", t1 - t0, "sec"
        print "fire time cell lists:", t2 - t1, "sec"
        print "fire ratio:", (t1 - t0) / (t2 - t1)

        if not self.res_x_final.success or not self.res_x_final_cells.success:
            print "-------------"
            print "res_x_final.rms:", self.res_x_final.rms
            print "res_x_final.nfev:", self.res_x_final.nfev
            print "res_x_final_cells.rms:", self.res_x_final_cells.rms
            print "res_x_final_cells.nfev:", self.res_x_final_cells.nfev
            print "self.res_x_final.success", self.res_x_final.success
            print "self.res_x_final_cells.success", self.res_x_final_cells.success
            print "-------------"
            plot_disks(self.x_initial, self.radii, self.boxvec, sca=self.sca)
            plot_disks(self.x_final, self.radii, self.boxvec, sca=self.sca)
            plot_disks(self.x_final_cells,
                       self.radii,
                       self.boxvec,
                       sca=self.sca)

        self.optimizer_.run(self.nstepsmax)
        self.res_x_final_ = self.optimizer_.get_result()
        t3 = time.time()
        self.optimizer_cells_.run(self.nstepsmax)
        self.res_x_final_cells_ = self.optimizer_cells_.get_result()
        t4 = time.time()

        self.x_final_ = self.res_x_final_.coords
        self.x_final_cells_ = self.res_x_final_cells_.coords
        print "lbfgs final E, x:", self.optimizer_.get_result().energy
        print "lbfgs final E, x_cells:", self.optimizer_cells_.get_result(
        ).energy
        print "lbfgs final E, plain: ", self.potential.getEnergy(self.x_final_)
        print "lbfgs final E, cell: ", self.potential_cells.getEnergy(
            self.x_final_cells_)
        print "lbfgs number of particles:", self.N
        print "lbfgs time no cell lists:", t3 - t2, "sec"
        print "lbfgs time cell lists:", t4 - t3, "sec"
        print "lbfgs ratio:", (t3 - t2) / (t4 - t3)

        if not self.res_x_final_.success or not self.res_x_final_cells_.success or not self.res_x_final.success or not self.res_x_final_cells.success:
            print "-------------"
            print "res_x_final_.rms:", self.res_x_final_.rms
            print "res_x_final_.nfev:", self.res_x_final_.nfev
            print "res_x_final_cells_.rms:", self.res_x_final_cells_.rms
            print "res_x_final_cells_.nfev:", self.res_x_final_cells_.nfev
            print "self.res_x_final_.success", self.res_x_final.success
            print "self.res_x_final_cells_.success", self.res_x_final_cells.success
            print "-------------"
            plot_disks(self.x_initial, self.radii, self.boxvec, sca=self.sca)
            plot_disks(self.x_final_, self.radii, self.boxvec, sca=self.sca)
            plot_disks(self.x_final_cells_,
                       self.radii,
                       self.boxvec,
                       sca=self.sca)

        assert (self.res_x_final.success)
        assert (self.res_x_final_cells.success)
        assert (self.res_x_final_.success)
        assert (self.res_x_final_cells_.success)
        for (xci, xi) in zip(self.x_final_cells, self.x_final):
            passed = (np.abs(xci - xi) < 1e-10)
            if (passed is False):
                print "xci", xci
                print "xi", xi
                assert (passed)
        print "energy no cell lists:", self.res_x_final.energy
        print "energy cell lists:", self.res_x_final_cells.energy
        self.t_ratio = (t1 - t0) / (t2 - t1)
        self.t_ratio_lbfgs = (t3 - t2) / (t4 - t3)
Example #10
0
 def optimize(self, nr_samples = 1):
     self.optimizer =  ModifiedFireCPP(self.x_initial.copy(), self.potential,
                                      dtmax=1, maxstep=self.maxstep,
                                      tol=self.tol, nsteps=1e8, verbosity=-1, iprint=-1)
     self.optimizer_ = LBFGS_CPP(self.x_initial.copy(), self.potential_)
     self.optimizer_cells = ModifiedFireCPP(self.x_initial.copy(), self.potential_cells,
                                      dtmax=1, maxstep=self.maxstep,
                                      tol=self.tol, nsteps=1e8, verbosity=-1, iprint=-1)
     self.optimizer_cells_ = LBFGS_CPP(self.x_initial.copy(), self.potential_cells_)
     print("initial E, x:", self.potential.getEnergy(self.x_initial.copy()))
     print("initial E, x_:", self.potential_cells.getEnergy(self.x_initial.copy()))
     
     t0 = time.time()
     print("self.optimizer.run(self.nstepsmax)", self.nstepsmax)
     self.optimizer.run(self.nstepsmax)
     self.res_x_final = self.optimizer.get_result()
     t1 = time.time()
     self.optimizer_cells.run(self.nstepsmax)
     self.res_x_final_cells = self.optimizer_cells.get_result()
     t2 = time.time()
             
     self.x_final = self.res_x_final.coords
     self.x_final_cells = self.res_x_final_cells.coords
     print("fire final E, x:", self.optimizer.get_result().energy)
     print("fire final E, x_cells:", self.optimizer_cells.get_result().energy)
     print("fire final E, plain: ", self.potential.getEnergy(self.x_final))
     print("fire final E, cell: ", self.potential_cells.getEnergy(self.x_final_cells))
     print("fire number of particles:", self.N)
     print("fire time no cell lists:", t1 - t0, "sec")
     print("fire time cell lists:", t2 - t1, "sec")
     print("fire ratio:", (t1 - t0) / (t2 - t1))
     
     if not self.res_x_final.success or not self.res_x_final_cells.success:
         print("-------------")
         print("res_x_final.rms:", self.res_x_final.rms)
         print("res_x_final.nfev:", self.res_x_final.nfev)
         print("res_x_final_cells.rms:", self.res_x_final_cells.rms)
         print("res_x_final_cells.nfev:", self.res_x_final_cells.nfev)
         print("self.res_x_final.success", self.res_x_final.success)
         print("self.res_x_final_cells.success", self.res_x_final_cells.success)
         print("-------------")
         plot_disks(self.x_initial, self.radii, self.boxvec, sca=self.sca)
         plot_disks(self.x_final, self.radii, self.boxvec, sca=self.sca)
         plot_disks(self.x_final_cells, self.radii, self.boxvec, sca=self.sca)
             
     self.optimizer_.run(self.nstepsmax)
     self.res_x_final_ = self.optimizer_.get_result()
     t3 = time.time()
     self.optimizer_cells_.run(self.nstepsmax)
     self.res_x_final_cells_ = self.optimizer_cells_.get_result()
     t4 = time.time()
     
     self.x_final_ = self.res_x_final_.coords
     self.x_final_cells_ = self.res_x_final_cells_.coords
     print("lbfgs final E, x:", self.optimizer_.get_result().energy)
     print("lbfgs final E, x_cells:", self.optimizer_cells_.get_result().energy)
     print("lbfgs final E, plain: ", self.potential_.getEnergy(self.x_final_))
     print("lbfgs final E, cell: ", self.potential_cells_.getEnergy(self.x_final_cells_))
     print("lbfgs number of particles:", self.N)
     print("lbfgs time no cell lists:", t3 - t2, "sec")
     print("lbfgs time cell lists:", t4 - t3, "sec")
     print("lbfgs ratio:", (t3 - t2) / (t4 - t3))
     
     if not self.res_x_final_.success or not self.res_x_final_cells_.success or not self.res_x_final.success or not self.res_x_final_cells.success:
         print("-------------")
         print("res_x_final_.rms:", self.res_x_final_.rms)
         print("res_x_final_.nfev:", self.res_x_final_.nfev)
         print("res_x_final_cells_.rms:", self.res_x_final_cells_.rms)
         print("res_x_final_cells_.nfev:", self.res_x_final_cells_.nfev)
         print("self.res_x_final_.success", self.res_x_final.success)
         print("self.res_x_final_cells_.success", self.res_x_final_cells.success)
         print("-------------")
         plot_disks(self.x_initial, self.radii, self.boxvec, sca=self.sca)
         plot_disks(self.x_final_, self.radii, self.boxvec, sca=self.sca)
         plot_disks(self.x_final_cells_, self.radii, self.boxvec, sca=self.sca)
     
     assert(self.res_x_final.success)
     assert(self.res_x_final_cells.success)
     assert(self.res_x_final_.success)
     assert(self.res_x_final_cells_.success)
     
     for (xci, xi) in zip(self.x_final_cells, self.x_final):
         passed = (np.abs(xci - xi) < 1e-10)
         if (passed is False):
             print("xci", xci)
             print("xi", xi)
             assert(passed)
     print("energy no cell lists:", self.res_x_final.energy)
     print("energy cell lists:", self.res_x_final_cells.energy)
     self.t_ratio = (t1 - t0) / (t2 - t1)
     self.t_ratio_lbfgs = (t3 - t2) / (t4 - t3)