def _color_by_mfpt(self, min1, T=1.): print "coloring by the mean first passage time to get to minimum", min1._id # get a list of transition states in the same cluster as min1 edges = nx.bfs_edges(self.graph, min1) transition_states = [ self.graph.get_edge_data(u, v)["ts"] for u, v in edges ] if not check_thermodynamic_info(transition_states): raise Exception("The thermodynamic information is not yet computed") # get an arbitrary second minimum2 for ts in transition_states: if ts.minimum2 != min1: min2 = ts.minimum2 break A = [min1] B = [min2] rcalc = RatesLinalg(transition_states, A, B, T=T) rcalc.compute_rates() mfptimes = rcalc.get_mfptimes() tmax = max(mfptimes.itervalues()) def get_mfpt(m): try: return mfptimes[m] except KeyError: return tmax self.dg.color_by_value(get_mfpt) self.redraw_disconnectivity_graph()
def _color_by_mfpt(self, min1, T=1.): print("coloring by the mean first passage time to get to minimum", min1._id) # get a list of transition states in the same cluster as min1 edges = nx.bfs_edges(self.graph, min1) transition_states = [ self.graph.get_edge_data(u, v)["ts"] for u, v in edges ] if not check_thermodynamic_info(transition_states): raise Exception( "The thermodynamic information is not yet computed") # get an arbitrary second minimum2 for ts in transition_states: if ts.minimum2 != min1: min2 = ts.minimum2 break A = [min1] B = [min2] rcalc = RatesLinalg(transition_states, A, B, T=T) rcalc.compute_rates() mfptimes = rcalc.get_mfptimes() tmax = max(mfptimes.values()) def get_mfpt(m): try: return mfptimes[m] except KeyError: return tmax self.dg.color_by_value(get_mfpt) self.redraw_disconnectivity_graph()
def do_check_committors(self, A, B): rcalc = RateCalculation(self.db.transition_states(), A, B) rcalc.compute_rates_and_committors() committors = rcalc.get_committors() rla = RatesLinalg(self.db.transition_states(), A, B) cla = rla.compute_committors() for m, qla in cla.items(): self.assertAlmostEqual(committors[m], qla, 7)
def do_check_rates(self, A, B): rcalc = RateCalculation(self.db.transition_states(), A, B) rcalc.compute_rates() rAB = rcalc.get_rate_AB() rBA = rcalc.get_rate_BA() rla = RatesLinalg(self.db.transition_states(), A, B) rAB_la = rla.compute_rates() self.assertAlmostEqual(rAB, rAB_la, 7)
def do_check_committors(self, A, B): rcalc = RateCalculation(self.db.transition_states(), A, B) rcalc.compute_rates_and_committors() committors = rcalc.get_committors() rla = RatesLinalg(self.db.transition_states(), A, B) cla = rla.compute_committors() for m, qla in cla.iteritems(): self.assertAlmostEqual(committors[m], qla, 7)
def test1(self): m1 = self.db.getMinimum(1) m2 = self.db.getMinimum(2) m3 = self.db.getMinimum(3) m4 = self.db.getMinimum(4) rcalc = RateCalculation(self.db.transition_states(), [m1], [m2], T=0.592) rcalc.compute_rates() self.assertAlmostEqual(rcalc.get_rate_AB(), 7106337458., delta=1e4) self.assertAlmostEqual(rcalc.get_rate_BA(), 1955395816., delta=1e4) rcalc = RateCalculation(self.db.transition_states(), [m1, m3], [m2, m4], T=0.592) rcalc.compute_rates() self.assertAlmostEqual(rcalc.get_rate_AB(), 8638736600., delta=1e4) self.assertAlmostEqual(rcalc.get_rate_BA(), 3499625167., delta=1e4) rla = RatesLinalg(self.db.transition_states(), [m1], [m2], T=0.592) rAB = rla.compute_rates() self.assertAlmostEqual(rAB, 7106337458., delta=1e4) rla = RatesLinalg(self.db.transition_states(), [m1, m3], [m2, m4], T=0.592) rAB = rla.compute_rates() self.assertAlmostEqual(rAB, 8638736600., delta=1e4)
def test1(self): m1 = self.db.getMinimum(1) m2 = self.db.getMinimum(2) m3 = self.db.getMinimum(3) m4 = self.db.getMinimum(4) rcalc = RateCalculation(self.db.transition_states(), [m1], [m2], T=0.592) rcalc.compute_rates() self.assertAlmostEqual(rcalc.get_rate_AB(), 7106337458., delta=1e4) self.assertAlmostEqual(rcalc.get_rate_BA(), 1955395816., delta=1e4) rcalc = RateCalculation(self.db.transition_states(), [m1,m3], [m2, m4], T=0.592) rcalc.compute_rates() self.assertAlmostEqual(rcalc.get_rate_AB(), 8638736600., delta=1e4) self.assertAlmostEqual(rcalc.get_rate_BA(), 3499625167., delta=1e4) rla = RatesLinalg(self.db.transition_states(), [m1], [m2], T=0.592) rAB = rla.compute_rates() self.assertAlmostEqual(rAB, 7106337458., delta=1e4) rla = RatesLinalg(self.db.transition_states(), [m1, m3], [m2, m4], T=0.592) rAB = rla.compute_rates() self.assertAlmostEqual(rAB, 8638736600., delta=1e4)