Example #1
0
    def test_impossible_model(self):
        graph = nx.path_graph(3)
        configurations = {
            (-1, -1, -1): 0,
            (-1, +1, -1): 0,
            (+1, -1, -1): 0,
            (+1, +1, +1): 0
        }
        decision_variables = (0, 1, 2)
        linear_energy_ranges = {v: (-2., 2.) for v in graph}
        quadratic_energy_ranges = {(u, v): (-1., 1.) for u, v in graph.edges}

        with self.assertRaises(pm.ImpossiblePenaltyModel):
            maxgap.generate_ising(graph, configurations, decision_variables,
                                  linear_energy_ranges,
                                  quadratic_energy_ranges, None)
Example #2
0
    def test_disjoint(self):
        graph = dnx.chimera_graph(1, 1, 3)
        graph.add_edge(8, 9)

        configurations = {(-1, -1, -1): 0, (+1, +1, -1): 0}
        decision_variables = (0, 1, 8)

        linear_energy_ranges = {v: (-2., 2.) for v in graph}
        quadratic_energy_ranges = {(u, v): (-1., 1.) for u, v in graph.edges}

        h, J, offset, gap = maxgap.generate_ising(graph, configurations,
                                                  decision_variables,
                                                  linear_energy_ranges,
                                                  quadratic_energy_ranges,
                                                  None)
        self.check_generated_ising_model(configurations, decision_variables, h,
                                         J, offset, gap)
        self.check_linear_energy_ranges(h, linear_energy_ranges)
        self.check_quadratic_energy_ranges(J, quadratic_energy_ranges)

        graph = dnx.chimera_graph(1, 1, 3)
        graph.add_edge(8, 9)

        configurations = {(-1, -1, +1, -1): 0, (+1, +1, -1, -1): 0}
        decision_variables = (0, 1, 3, 8)

        linear_energy_ranges = {v: (-2., 2.) for v in graph}
        quadratic_energy_ranges = {(u, v): (-1., 1.) for u, v in graph.edges}

        h, J, offset, gap = maxgap.generate_ising(graph, configurations,
                                                  decision_variables,
                                                  linear_energy_ranges,
                                                  quadratic_energy_ranges,
                                                  None)
        self.check_generated_ising_model(configurations, decision_variables, h,
                                         J, offset, gap)
        self.check_linear_energy_ranges(h, linear_energy_ranges)
        self.check_quadratic_energy_ranges(J, quadratic_energy_ranges)
Example #3
0
    def test_specify_z3(self):
        """Test a simple model specifying yices as the smt solver. Combined
        with the other test_specify_... tests, serves as a smoke test for
        the smt_solver_name parameter.
        """
        graph = nx.complete_graph(3)
        configurations = {(-1, -1): 0, (1, 1): 0}
        decision_variables = [0, 1]
        linear_energy_ranges = {v: (-2., 2.) for v in graph}
        quadratic_energy_ranges = {(u, v): (-1., 1.) for u, v in graph.edges}

        h, J, offset, gap = maxgap.generate_ising(graph, configurations,
                                                  decision_variables,
                                                  linear_energy_ranges,
                                                  quadratic_energy_ranges,
                                                  'z3')
        self.check_generated_ising_model(configurations, decision_variables, h,
                                         J, offset, gap)
Example #4
0
    def test_one_aux(self):
        graph = nx.complete_graph(3)

        configurations = {(-1, -1): 0, (1, 1): 0}

        linear_energy_ranges = {v: (-2., 2.) for v in graph}
        quadratic_energy_ranges = {(u, v): (-1., 1.) for u, v in graph.edges}
        decision_variables = [0, 1]

        h, J, offset, gap = maxgap.generate_ising(graph, configurations,
                                                  decision_variables,
                                                  linear_energy_ranges,
                                                  quadratic_energy_ranges,
                                                  None)
        self.check_generated_ising_model(configurations, decision_variables, h,
                                         J, offset, gap)
        self.check_linear_energy_ranges(h, linear_energy_ranges)
        self.check_quadratic_energy_ranges(J, quadratic_energy_ranges)
Example #5
0
    def test_multiplication(self):

        graph = nx.complete_graph(4)
        configurations = {(x, y, x * y): 0
                          for x, y in itertools.product((-1, 1), repeat=2)}
        decision_variables = [0, 1, 2]

        linear_energy_ranges = {v: (-2., 2.) for v in graph}
        quadratic_energy_ranges = {(u, v): (-1., 1.) for u, v in graph.edges}

        h, J, offset, gap = maxgap.generate_ising(graph, configurations,
                                                  decision_variables,
                                                  linear_energy_ranges,
                                                  quadratic_energy_ranges,
                                                  None)
        self.check_generated_ising_model(configurations, decision_variables, h,
                                         J, offset, gap)
        self.check_linear_energy_ranges(h, linear_energy_ranges)
        self.check_quadratic_energy_ranges(J, quadratic_energy_ranges)
Example #6
0
    def test_basic(self):
        """A typical use case, an AND gate on a chimera tile."""
        graph = dnx.chimera_graph(1, 1, 4)
        configurations = {
            (-1, -1, -1): 0,
            (-1, +1, -1): 0,
            (+1, -1, -1): 0,
            (+1, +1, +1): 0
        }
        decision_variables = (0, 1, 2)
        linear_energy_ranges = {v: (-2., 2.) for v in graph}
        quadratic_energy_ranges = {(u, v): (-1., 1.) for u, v in graph.edges}

        h, J, offset, gap = maxgap.generate_ising(graph, configurations,
                                                  decision_variables,
                                                  linear_energy_ranges,
                                                  quadratic_energy_ranges,
                                                  None)
        self.check_generated_ising_model(configurations, decision_variables, h,
                                         J, offset, gap)
        self.check_linear_energy_ranges(h, linear_energy_ranges)
        self.check_quadratic_energy_ranges(J, quadratic_energy_ranges)
Example #7
0
    def test_restricted_energy_ranges(self):
        """Create asymmetric energy ranges and test against that."""
        graph = dnx.chimera_graph(1, 1, 3)
        configurations = {
            (-1, -1, -1): 0,
            (-1, +1, -1): 0,
            (+1, -1, -1): 0,
            (+1, +1, +1): 0
        }
        decision_variables = (0, 1, 2)
        linear_energy_ranges = {v: (-1., 2.) for v in graph}
        quadratic_energy_ranges = {(u, v): (-1., .5) for u, v in graph.edges}

        h, J, offset, gap = maxgap.generate_ising(graph, configurations,
                                                  decision_variables,
                                                  linear_energy_ranges,
                                                  quadratic_energy_ranges,
                                                  None)
        self.check_generated_ising_model(configurations, decision_variables, h,
                                         J, offset, gap)
        self.check_linear_energy_ranges(h, linear_energy_ranges)
        self.check_quadratic_energy_ranges(J, quadratic_energy_ranges)