Example #1
0
    def test_spectral_decomposition(self, tol):
        """Test that the correct spectral decomposition is returned."""

        a, P = spectral_decomposition(H)

        # verify that H = \sum_k a_k P_k
        assert np.allclose(H, np.einsum("i,ijk->jk", a, P), atol=tol, rtol=0)
Example #2
0
    def test_spectral_decomposition(self):
        """Test that the correct spectral decomposition is returned."""
        self.logTestName()

        a, P = spectral_decomposition(H)

        # verify that H = \sum_k a_k P_k
        self.assertAllAlmostEqual(H, np.einsum("i,ijk->jk", a, P), delta=self.tol)
Example #3
0
    def sample(self, observable, wires, par):

        if not isinstance(observable, list):
            observable, wires, par = [observable], [wires], [par]

        matrices = [
            self._get_operator_matrix(o, p) for o, p in zip(observable, par)
        ]

        decompositions = [spectral_decomposition(A) for A in matrices]
        eigenvalues, projector_groups = list(zip(*decompositions))
        eigenvalues = list(eigenvalues)

        # Matching each projector with the wires it acts on
        # while preserving the groupings
        projectors_with_wires = [[
            (proj, wires[idx]) for proj in proj_group
        ] for idx, proj_group in enumerate(projector_groups)]

        # The eigenvalue - projector maps are preserved as product() preserves
        # the previous ordering by creating a lexicographic ordering
        joint_outcomes = list(product(*eigenvalues))
        projector_tensor_products = list(product(*projectors_with_wires))

        joint_probabilities = []

        for projs in projector_tensor_products:
            obs_nodes = []
            obs_wires = []
            for proj, proj_wires in projs:

                tensor = proj.reshape([2] * len(proj_wires) * 2)
                obs_nodes.append(self._add_node(tensor, proj_wires))
                obs_wires.append(proj_wires)

            joint_probabilities.append(self.ev(obs_nodes, obs_wires))

        outcomes = np.array([np.prod(p) for p in joint_outcomes])
        return np.random.choice(outcomes, self.shots, p=joint_probabilities)