Example #1
0
    'sources': 'ZTF_sources_20200401'
}

outputDir = opts.outputDir
algorithms = opts.algorithms.split(",")

plotDir = os.path.join(outputDir, 'plots')
if not os.path.isdir(plotDir):
    os.makedirs(plotDir)

kow = []
nquery = 10
cnt = 0
while cnt < nquery:
    try:
        kow = Kowalski(username=opts.user, password=opts.pwd)
        break
    except:
        time.sleep(5)
    cnt = cnt + 1
if cnt == nquery:
    raise Exception('Kowalski connection failed...')

nquery = 10
cnt = 0
while cnt < nquery:
    try:
        zvmarshal = zvm(username=str(opts.zvm_user),
                        password=str(opts.zvm_pwd),
                        verbose=True,
                        host="rico.caltech.edu")
Example #2
0
from ...models import (
    DBSession,
    Obj,
    Source,
    Candidate,
    User,
    Token,
    Group,
    Spectrum,
    CronJobRun,
)

_, cfg = load_env()
kowalski = Kowalski(
    token=cfg["app.kowalski.token"],
    protocol=cfg["app.kowalski.protocol"],
    host=cfg["app.kowalski.host"],
    port=int(cfg["app.kowalski.port"]),
)


class StatsHandler(BaseHandler):
    @permissions(["System admin"])
    def get(self):
        """
        ---
        description: Retrieve basic DB statistics
        tags:
          - system_info
        responses:
          200:
            content:
import csv

# load dataset
parser = argparse.ArgumentParser()
parser.add_argument("inputfile")
parser.add_argument("--id", type=int, default=1, help="group id on Fritz")
args = parser.parse_args()
with open(args.inputfile) as f:
    data = csv.reader(f)
    trainingset = pd.DataFrame(data)

# Kowalski
with open('password.txt', 'r') as f:
    password = f.read().splitlines()
G = Kowalski(username=password[0],
             password=password[1],
             host='gloria.caltech.edu',
             timeout=1000)

# get scores and data and combine
scores = get_highscoring_objects(G, otype='vnv', condition='$or')

index = scores.index
condition = ((scores["vnv_dnn"] > 0.95) &
             (scores['vnv_xgb'] <= 0.1)) | ((scores["vnv_dnn"] <= 0.1) &
                                            (scores['vnv_xgb'] > 0.95))
disagreements = index[condition]
disagreeing_scores = scores.iloc[disagreements, :]

stats = get_stats(G, disagreeing_scores['_id'])
data = pd.merge(disagreeing_scores, stats, left_on='_id', right_on='_id')
data['train'] = np.isin(data['_id'], trainingset['ztf_id'])