Example #1
0
    def __init__(self, chromosome_name, bam_file_path, draft_file_path, truth_bam, hp_tag, train_mode):
        """
        Initialize a manager object
        :param chromosome_name: Name of the chromosome
        :param bam_file_path: Path to the BAM file
        :param draft_file_path: Path to the reference FASTA file
        :param truth_bam: Path to the truth sequence to reference mapping file
        """
        # --- initialize handlers ---
        # create objects to handle different files and query
        self.bam_path = bam_file_path
        self.fasta_path = draft_file_path
        self.bam_handler = PEPPER_HP.BAM_handler(bam_file_path)
        self.fasta_handler = PEPPER_HP.FASTA_handler(draft_file_path)
        self.train_mode = train_mode
        self.hp_tag = hp_tag
        self.downsample_rate = 1.0
        self.truth_bam = None

        if self.train_mode:
            self.truth_bam = truth_bam

        # --- initialize names ---
        # name of the chromosome
        self.chromosome_name = chromosome_name
Example #2
0
    def __init__(self, reference_file_path, contigs, sample_name, output_dir,
                 filename):
        self.fasta_handler = PEPPER_HP.FASTA_handler(reference_file_path)
        self.contigs = contigs
        vcf_header = self.get_vcf_header(sample_name, contigs)

        self.vcf_file = VariantFile(output_dir + filename + '.vcf',
                                    'w',
                                    header=vcf_header)
Example #3
0
    def reads_to_reference_realignment(self, region_start, region_end, reads):
        # PERFORMS LOCAL REALIGNMENT OF READS TO THE REFERENCE
        if not reads:
            return []

        ref_start = region_start
        ref_end = region_end + AlingerOptions.ALIGNMENT_SAFE_BASES

        ref_sequence = self.fasta_handler.get_reference_sequence(
            self.chromosome_name, ref_start, ref_end)

        aligner = PEPPER_HP.ReadAligner(ref_start, ref_end, ref_sequence)

        realigned_reads = aligner.align_reads_to_reference(reads)

        # generate_pileup_from_reads.pileup_from_reads(ref_sequence, ref_start, ref_end, realigned_reads)

        return realigned_reads
Example #4
0
    def __init__(self, vcf1, vcf2, ref_fasta, only_overlapping=True, discard_phase=False, detailed_info=False):
        """Initialize variant merging.

        Merge variants from two haploid VCFs into a diploid vcf. Variants in
        one file which overlap with variants in the other will have their alts
        padded.

        .. warning::

            Variants in a single vcf file should not overlap with each other.

        :param vcf1, vcf2: paths to haploid vcf files.
        :param ref_fasta: path to reference.fasta file.
        :param only_overlapping: bool, merge only overlapping variants (not
            adjacent ones).
        :param discard_phase: bool, if False, preserve phase, else output
            unphased variants.

        """
        self.only_overlapping = only_overlapping
        self.discard_phase = discard_phase
        self.detailed_info = detailed_info

        self.vcfs = [VCFReader(vcf) for vcf in (vcf1, vcf2)]
        for vcf in self.vcfs:
            vcf.index()  # create tree
        self.fasta = pysam.FastaFile(ref_fasta)
        all_contigs = list(set(itertools.chain(*[v.chroms for v in self.vcfs])))
        all_contigs = sorted(all_contigs, key=natural_key)

        fasta_handler = PEPPER_HP.FASTA_handler(ref_fasta)
        sqs = fasta_handler.get_chromosome_names()

        self.chroms = []
        for sq in sqs:
            if sq not in all_contigs:
                continue
            sq_id = sq
            ln = fasta_handler.get_chromosome_sequence_length(sq)
            self.chroms.append((sq_id, ln))
Example #5
0
    def create_summary(self, truth_bam, hp_tag, train_mode, realignment_flag):
        log_prefix = "[" + self.chromosome_name + ":" + str(self.region_start_position) + "-" \
                     + str(self.region_end_position) + "]"
        all_images = []
        all_labels = []
        all_positions = []
        all_image_chunk_ids = []
        all_ref_seq = []

        if train_mode:
            # get the reads from the bam file
            truth_bam_handler = PEPPER_HP.BAM_handler(truth_bam)
            # truth reads
            include_truth_supp = True
            truth_read_mq = 60
            truth_read_baseq = 0
            # get the reads from the bam file
            truth_reads = truth_bam_handler.get_reads(
                self.chromosome_name, self.region_start_position,
                self.region_end_position, include_truth_supp, truth_read_mq,
                truth_read_baseq)

            # do a local realignment of truth reads to reference
            if realignment_flag:
                truth_reads = self.reads_to_reference_realignment(
                    self.region_start_position, self.region_end_position,
                    truth_reads)

            truth_regions = []
            for read in truth_reads:
                # start, end, read, is_kept, is_h1
                truth_regions.append([read.pos, read.pos_end - 1, read, True])

            # these are all the regions we will use to generate summaries from.
            # It's important to notice that we need to realign the reads to the reference before we do that.
            truth_regions = self.remove_conflicting_regions(truth_regions)

            if not truth_regions:
                # sys.stderr.write(TextColor.GREEN + "INFO: " + log_prefix + " NO TRAINING REGION FOUND.\n"
                #                  + TextColor.END)
                return [], [], [], [], []

            for region in truth_regions:
                region_start, region_end, truth_read, is_kept = tuple(region)

                if not is_kept:
                    continue

                ref_start = region_start
                ref_end = region_end + 1
                # ref_seq should contain region_end_position base
                ref_seq = self.fasta_handler.get_reference_sequence(
                    self.chromosome_name, ref_start, ref_end)

                read_start = max(0, region_start)
                read_end = region_end
                all_reads = self.bam_handler.get_reads(
                    self.chromosome_name, read_start, read_end,
                    ReadFilterOptions.INCLUDE_SUPPLEMENTARY,
                    ReadFilterOptions.MIN_MAPQ, ReadFilterOptions.MIN_BASEQ)
                total_reads = len(all_reads)

                if total_reads == 0:
                    continue

                if total_reads > AlingerOptions.MAX_READS_IN_REGION:
                    # https://github.com/google/nucleus/blob/master/nucleus/util/utils.py
                    # reservoir_sample method utilized here
                    random = np.random.RandomState(AlingerOptions.RANDOM_SEED)
                    sample = []
                    for i, read in enumerate(all_reads):
                        if len(sample) < AlingerOptions.MAX_READS_IN_REGION:
                            sample.append(read)
                        else:
                            j = random.randint(0, i + 1)
                            if j < AlingerOptions.MAX_READS_IN_REGION:
                                sample[j] = read
                    all_reads = sample

                # sys.stderr.write(TextColor.GREEN + "INFO: " + log_prefix + " TOTAL " + str(total_reads)
                #                  + " READS FOUND.\n" + TextColor.END)

                start_time = time.time()

                if realignment_flag:
                    all_reads = self.reads_to_reference_realignment(
                        read_start, read_end, all_reads)
                    # sys.stderr.write(TextColor.GREEN + "INFO: " + log_prefix + " REALIGNMENT OF TOTAL "
                    #                  + str(total_reads) + " READS TOOK: " + str(round(time.time()-start_time, 5))
                    #                  + " secs\n" + TextColor.END)

                summary_generator = PEPPER_HP.SummaryGenerator(
                    ref_seq, self.chromosome_name, ref_start, ref_end)

                summary_generator.generate_train_summary(
                    all_reads, region_start, region_end, truth_read, hp_tag)

                image_summary = summary_generator.chunk_image_train(
                    ImageSizeOptions.SEQ_LENGTH, ImageSizeOptions.SEQ_OVERLAP,
                    ImageSizeOptions.IMAGE_HEIGHT)

                all_images.extend(image_summary.images)
                all_labels.extend(image_summary.labels)
                all_positions.extend(image_summary.positions)
                all_image_chunk_ids.extend(image_summary.chunk_ids)
                all_ref_seq.extend(image_summary.refs)
        else:
            # HERE REALIGN THE READS TO THE REFERENCE THEN GENERATE THE SUMMARY TO GET A POLISHED HAPLOTYPE
            read_start = max(0, self.region_start_position)
            read_end = self.region_end_position

            all_reads = self.bam_handler.get_reads(
                self.chromosome_name, read_start, read_end,
                ReadFilterOptions.INCLUDE_SUPPLEMENTARY,
                ReadFilterOptions.MIN_MAPQ, ReadFilterOptions.MIN_BASEQ)

            total_reads = len(all_reads)

            if total_reads == 0:
                return [], [], [], [], []

            if total_reads > AlingerOptions.MAX_READS_IN_REGION:
                # https://github.com/google/nucleus/blob/master/nucleus/util/utils.py
                # reservoir_sample method utilized here
                random = np.random.RandomState(AlingerOptions.RANDOM_SEED)
                sample = []
                for i, read in enumerate(all_reads):
                    if len(sample) < AlingerOptions.MAX_READS_IN_REGION:
                        sample.append(read)
                    else:
                        j = random.randint(0, i + 1)
                        if j < AlingerOptions.MAX_READS_IN_REGION:
                            sample[j] = read
                all_reads = sample

            # sys.stderr.write(TextColor.PURPLE + "INFO: " + log_prefix + " TOTAL " + str(total_reads) + " READS FOUND\n"
            #                  + TextColor.END)

            if realignment_flag:
                start_time = time.time()
                all_reads = self.reads_to_reference_realignment(
                    self.region_start_position, self.region_end_position,
                    all_reads)
                # sys.stderr.write(TextColor.GREEN + "INFO: " + log_prefix + " REALIGNMENT OF TOTAL " + str(total_reads)
                #                 + " READS TOOK: " + str(round(time.time()-start_time, 5)) + " secs\n" + TextColor.END)

            # ref_seq should contain region_end_position base
            ref_seq = self.fasta_handler.get_reference_sequence(
                self.chromosome_name, self.region_start_position,
                self.region_end_position + 1)

            summary_generator = PEPPER_HP.SummaryGenerator(
                ref_seq, self.chromosome_name, self.region_start_position,
                self.region_end_position)

            summary_generator.generate_summary(all_reads,
                                               self.region_start_position,
                                               self.region_end_position,
                                               hp_tag)

            image_summary = summary_generator.chunk_image(
                ImageSizeOptions.SEQ_LENGTH, ImageSizeOptions.SEQ_OVERLAP,
                ImageSizeOptions.IMAGE_HEIGHT)

            all_images.extend(image_summary.images)
            all_labels.extend(image_summary.labels)
            all_positions.extend(image_summary.positions)
            all_image_chunk_ids.extend(image_summary.chunk_ids)
            all_ref_seq.extend(image_summary.refs)

        assert (len(all_images) == len(all_labels) == len(all_image_chunk_ids)
                == len(all_ref_seq))

        return all_images, all_labels, all_positions, all_image_chunk_ids, all_ref_seq
Example #6
0
def call_variant(bam_filepath, fasta_filepath, output_dir, threads, region,
                 model_path, batch_size, gpu_mode, callers_per_gpu, device_ids,
                 num_workers, sample_name):
    """
    Run all the sub-modules to polish an input assembly.
    """
    start_time = time.time()
    # check the bam file
    if not os.path.isfile(bam_filepath) or not PEPPER_HP.BAM_handler(
            bam_filepath):
        sys.stderr.write("ERROR: CAN NOT LOCATE BAM FILE.\n")
        exit(1)

    # check the fasta file
    if not os.path.isfile(fasta_filepath):
        sys.stderr.write("ERROR: CAN NOT LOCATE FASTA FILE.\n")
        exit(1)

    # check the model file
    if not os.path.isfile(model_path):
        sys.stderr.write("ERROR: CAN NOT LOCATE MODEL FILE.\n")
        exit(1)

    # check number of threads
    if threads <= 0:
        sys.stderr.write("ERROR: THREAD NEEDS TO BE >=0.\n")
        exit(1)

    # check batch_size
    if batch_size <= 0:
        sys.stderr.write("ERROR: batch_size NEEDS TO BE >0.\n")
        exit(1)

    # check num_workers
    if num_workers < 0:
        sys.stderr.write("ERROR: num_workers NEEDS TO BE >=0.\n")
        exit(1)

    # check if gpu inference can be done
    if gpu_mode:
        if not torch.cuda.is_available():
            sys.stderr.write("ERROR: TORCH IS NOT BUILT WITH CUDA.\n")
            sys.stderr.write(
                "SEE TORCH CAPABILITY:\n$ python3\n"
                ">>> import torch \n"
                ">>> torch.cuda.is_available()\n If true then cuda is avilable"
            )
            exit(1)

    # check if all devices are available
    if device_ids is not None:
        device_ids = [int(i) for i in device_ids.split(',')]
        for device_id in device_ids:
            major_capable, minor_capable = torch.cuda.get_device_capability(
                device=device_id)
            if major_capable < 0:
                sys.stderr.write("ERROR: GPU DEVICE: " + str(device_id) +
                                 " IS NOT CUDA CAPABLE.\n")
                sys.stderr.write(
                    "Try running: $ python3\n"
                    ">>> import torch \n"
                    ">>> torch.cuda.get_device_capability(device=" +
                    str(device_id) + ")\n")
                exit(1)
            else:
                sys.stderr.write("INFO: CAPABILITY OF GPU#" + str(device_id) +
                                 ":\t" + str(major_capable) + "-" +
                                 str(minor_capable) + "\n")

    timestr = time.strftime("%m%d%Y_%H%M%S")

    output_dir = UserInterfaceSupport.handle_output_directory(output_dir)

    image_output_directory_hp1 = output_dir + "images_" + str(
        timestr) + "/hp1_images/"
    image_output_directory_hp2 = output_dir + "images_" + str(
        timestr) + "/hp2_images/"

    prediction_output_directory_hp1 = output_dir + "predictions_" + str(
        timestr) + "/hp1/"
    prediction_output_directory_hp2 = output_dir + "predictions_" + str(
        timestr) + "/hp2/"

    candidate_output_directory_hp1 = output_dir + "candidate_variants_" + str(
        timestr) + "/hp1/"
    candidate_output_directory_hp2 = output_dir + "candidate_variants_" + str(
        timestr) + "/hp2/"

    sys.stderr.write("[" + str(datetime.now().strftime('%m-%d-%Y %H:%M:%S')) +
                     "] INFO: RUN-ID: " + str(timestr) + "\n")
    sys.stderr.write("[" + str(datetime.now().strftime('%m-%d-%Y %H:%M:%S')) +
                     "] INFO: IMAGE OUTPUT: " +
                     str(image_output_directory_hp1) + "\n")

    sys.stderr.write("[" + str(datetime.now().strftime('%m-%d-%Y %H:%M:%S')) +
                     "] STEP 1.1: GENERATING IMAGES FOR HAPLOTYPE 1\n")
    make_images(bam_filepath, fasta_filepath, region,
                image_output_directory_hp1, 1, threads)

    sys.stderr.write("[" + str(datetime.now().strftime('%m-%d-%Y %H:%M:%S')) +
                     "] INFO: RUN-ID: " + str(timestr) + "\n")
    sys.stderr.write("[" + str(datetime.now().strftime('%m-%d-%Y %H:%M:%S')) +
                     "] INFO: IMAGE OUTPUT: " +
                     str(image_output_directory_hp2) + "\n")

    sys.stderr.write("[" + str(datetime.now().strftime('%m-%d-%Y %H:%M:%S')) +
                     "] STEP 1.2: GENERATING IMAGES FOR BOTH HAPLOTYPE 2\n")
    make_images(bam_filepath, fasta_filepath, region,
                image_output_directory_hp2, 2, threads)

    sys.stderr.write("[" + str(datetime.now().strftime('%m-%d-%Y %H:%M:%S')) +
                     "] STEP 2.1: RUNNING INFERENCE ON HAPLOTYPE 1\n")
    sys.stderr.write("[" + str(datetime.now().strftime('%m-%d-%Y %H:%M:%S')) +
                     "] INFO: OUTPUT: " +
                     str(prediction_output_directory_hp1) + "\n")
    run_inference(image_output_directory_hp1, model_path, batch_size,
                  num_workers, prediction_output_directory_hp1, device_ids,
                  callers_per_gpu, gpu_mode, threads)

    sys.stderr.write("[" + str(datetime.now().strftime('%m-%d-%Y %H:%M:%S')) +
                     "] STEP 2.2: RUNNING INFERENCE ON HAPLOTYPE 2\n")
    sys.stderr.write("[" + str(datetime.now().strftime('%m-%d-%Y %H:%M:%S')) +
                     "] INFO: OUTPUT: " +
                     str(prediction_output_directory_hp1) + "\n")
    run_inference(image_output_directory_hp2, model_path, batch_size,
                  num_workers, prediction_output_directory_hp2, device_ids,
                  callers_per_gpu, gpu_mode, threads)

    sys.stderr.write("[" + str(datetime.now().strftime('%m-%d-%Y %H:%M:%S')) +
                     "] STEP 3.1: CALLING VARIANTS ON HAPLOTYPE 1\n")
    sys.stderr.write("[" + str(datetime.now().strftime('%m-%d-%Y %H:%M:%S')) +
                     "] INFO: OUTPUT: " + str(candidate_output_directory_hp1) +
                     "\n")
    process_candidates(prediction_output_directory_hp1, fasta_filepath,
                       sample_name, candidate_output_directory_hp1, threads)

    sys.stderr.write("[" + str(datetime.now().strftime('%m-%d-%Y %H:%M:%S')) +
                     "] STEP 3.2: CALLING VARIANTS ON HAPLOTYPE 2\n")
    sys.stderr.write("[" + str(datetime.now().strftime('%m-%d-%Y %H:%M:%S')) +
                     "] INFO: OUTPUT: " + str(candidate_output_directory_hp2) +
                     "\n")
    process_candidates(prediction_output_directory_hp2, fasta_filepath,
                       sample_name, candidate_output_directory_hp2, threads)

    sys.stderr.write("[" + str(datetime.now().strftime('%m-%d-%Y %H:%M:%S')) +
                     "] STEP 4: MERGING VARIANTS.\n")
    sys.stderr.write("[" + str(datetime.now().strftime('%m-%d-%Y %H:%M:%S')) +
                     "] INFO: OUTPUT: " + str(output_dir) + "\n")
    haploid2diploid(
        candidate_output_directory_hp1 + 'candidates_as_variants.vcf',
        candidate_output_directory_hp2 + 'candidates_as_variants.vcf',
        fasta_filepath, output_dir)

    end_time = time.time()
    mins = int((end_time - start_time) / 60)
    secs = int((end_time - start_time)) % 60
    sys.stderr.write("[" + datetime.now().strftime('%m-%d-%Y %H:%M:%S') +
                     "] TOTAL ELAPSED TIME FOR VARIANT CALLING: " + str(mins) +
                     " Min " + str(secs) + " Sec\n")
Example #7
0
    def get_chromosome_list(chromosome_names, ref_file, bam_file, region_bed):
        """
        PARSES THROUGH THE CHROMOSOME PARAMETER TO FIND OUT WHICH REGIONS TO PROCESS
        :param chromosome_names: NAME OF CHROMOSOME
        :param ref_file: PATH TO THE REFERENCE FILE
        :param bam_file: PATH TO BAM FILE
        :return: LIST OF CHROMOSOME IN REGION SPECIFIC FORMAT
        """
        if not chromosome_names and not region_bed:
            fasta_handler = PEPPER_HP.FASTA_handler(ref_file)
            bam_handler = PEPPER_HP.BAM_handler(bam_file)
            bam_contigs = bam_handler.get_chromosome_sequence_names()
            fasta_contigs = fasta_handler.get_chromosome_names()
            common_contigs = list(set(fasta_contigs) & set(bam_contigs))
            common_contigs = list(set(common_contigs) - set(EXCLUDED_HUMAN_CONTIGS))

            if len(common_contigs) == 0:
                sys.stderr.write("[" + datetime.now().strftime('%m-%d-%Y %H:%M:%S') + "] "
                                 + "ERROR: NO COMMON CONTIGS FOUND BETWEEN THE BAM FILE AND THE FASTA FILE.")
                sys.stderr.flush()
                exit(1)

            common_contigs = sorted(common_contigs, key=UserInterfaceSupport.natural_key)
            sys.stderr.write("[" + datetime.now().strftime('%m-%d-%Y %H:%M:%S') + "] INFO: COMMON CONTIGS FOUND: " + str(common_contigs) + "\n")
            sys.stderr.flush()

            chromosome_name_list = []
            for contig_name in common_contigs:
                chromosome_name_list.append((contig_name, None))

            return chromosome_name_list

        if region_bed:
            chromosome_name_list = []
            with open(region_bed) as fp:
                line = fp.readline()
                cnt = 1
                while line:
                    line_to_list = line.rstrip().split('\t')
                    chr_name, start_pos, end_pos = line_to_list[0], int(line_to_list[1]), int(line_to_list[2])
                    region = sorted([start_pos, end_pos])
                    chromosome_name_list.append((chr_name, region))
                    line = fp.readline()
                cnt += 1
            return chromosome_name_list

        split_names = chromosome_names.strip().split(',')
        split_names = [name.strip() for name in split_names]

        chromosome_name_list = []
        for name in split_names:
            # split on region
            region = None
            if ':' in name:
                name_region = name.strip().split(':')

                if len(name_region) != 2:
                    sys.stderr.write("ERROR: --region INVALID value.\n")
                    exit(0)

                name, region = tuple(name_region)
                region = region.strip().split('-')
                region = [int(pos) for pos in region]

                if len(region) != 2 or not region[0] <= region[1]:
                    sys.stderr.write("ERROR: --region INVALID value.\n")
                    exit(0)

            range_split = name.split('-')
            if len(range_split) > 1:
                chr_prefix = ''
                for p in name:
                    if p.isdigit():
                        break
                    else:
                        chr_prefix = chr_prefix + p

                int_ranges = []
                for item in range_split:
                    s = ''.join(i for i in item if i.isdigit())
                    int_ranges.append(int(s))
                int_ranges = sorted(int_ranges)

                for chr_seq in range(int_ranges[0], int_ranges[-1] + 1):
                    chromosome_name_list.append((chr_prefix + str(chr_seq), region))
            else:
                chromosome_name_list.append((name, region))

        return chromosome_name_list
Example #8
0
    def chromosome_level_parallelization(chr_list,
                                         bam_file,
                                         draft_file,
                                         truth_bam,
                                         hp_tag,
                                         output_path,
                                         total_threads,
                                         train_mode,
                                         realignment_flag):

        if train_mode:
            max_size = 10000
        else:
            max_size = 10000

        start_time = time.time()
        fasta_handler = PEPPER_HP.FASTA_handler(draft_file)

        all_intervals = []
        # first calculate all the intervals that we need to process
        for chr_name, region in chr_list:
            # contig update message
            if not region:
                interval_start, interval_end = (0, fasta_handler.get_chromosome_sequence_length(chr_name) - 1)
            else:
                interval_start, interval_end = tuple(region)
                interval_start = max(0, interval_start)
                interval_end = min(interval_end, fasta_handler.get_chromosome_sequence_length(chr_name) - 1)

            # this is the interval size each of the process is going to get which is 10^6
            # I will split this into 10^4 size inside the worker process
            for pos in range(interval_start, interval_end, max_size):
                pos_start = max(interval_start, pos - ImageSizeOptions.MIN_IMAGE_OVERLAP)
                pos_end = min(interval_end, pos + max_size + ImageSizeOptions.MIN_IMAGE_OVERLAP)
                all_intervals.append((chr_name, pos_start, pos_end))

        # all intervals calculated now
        # contig update message
        sys.stderr.write("[" + datetime.now().strftime('%m-%d-%Y %H:%M:%S') + "] "
                         + "INFO: TOTAL CONTIGS: " + str(len(chr_list))
                         + " TOTAL INTERVALS: " + str(len(all_intervals)) + "\n")
        sys.stderr.flush()

        args = (output_path, bam_file, draft_file, truth_bam, hp_tag, train_mode, realignment_flag)
        with concurrent.futures.ProcessPoolExecutor(max_workers=total_threads) as executor:
            futures = [executor.submit(UserInterfaceSupport.image_generator, args, all_intervals, total_threads,
                                       thread_id)
                       for thread_id in range(0, total_threads)]

            for fut in concurrent.futures.as_completed(futures):
                if fut.exception() is None:
                    # get the results
                    thread_id = fut.result()
                    sys.stderr.write("[" + str(datetime.now().strftime('%m-%d-%Y %H:%M:%S')) + "] INFO: THREAD "
                                     + str(thread_id) + " FINISHED SUCCESSFULLY.\n")
                else:
                    sys.stderr.write("ERROR: " + str(fut.exception()) + "\n")
                fut._result = None  # python issue 27144

        end_time = time.time()
        mins = int((end_time - start_time) / 60)
        secs = int((end_time - start_time)) % 60
        sys.stderr.write("[" + str(datetime.now().strftime('%m-%d-%Y %H:%M:%S')) + "] INFO: FINISHED IMAGE GENERATION\n")
        sys.stderr.write("[" + str(datetime.now().strftime('%m-%d-%Y %H:%M:%S')) + "] INFO: ELAPSED TIME: " + str(mins) + " Min " + str(secs) + " Sec\n")