def predictions(self, image): """Get detection result for input image. Parameters ---------- image : `numpy.ndarray` The input image in [h, n, c] ndarry format. Returns ------- list List of batch prediction resutls. Each element is a dictionary containing: {'name', 'score', 'mid', 'bounding_poly'}. """ from google.cloud import vision from google.protobuf.json_format import MessageToJson from protobuf_to_dict import protobuf_to_dict image_bytes = ndarray_to_bytes(image) image = vision.types.Image(content=image_bytes) response = self.model.object_localization( image=image).localized_object_annotations predictions = [] for object in response: predictions.append(protobuf_to_dict(object)) return predictions
def predictions(self, image): """Get prediction for input image Parameters ---------- image : `numpy.ndarray` The input image in [h, n, c] ndarry format. Returns ------- list List of anitporn prediction resutls. Each element is a dictionary containing: {'class_name', 'probability'} """ image_bytes = ndarray_to_bytes(image) predictions = self.model.antiPorn(image_bytes) return predictions['result']
def predictions(self, image): """Get prediction for input image. Parameters ---------- image : `numpy.ndarray` The input image in [h, n, c] ndarry format. Returns ------- list List of prediction resutls. Each element is a dictionary containing: {'adult', 'medical', 'racy', 'spoof', 'violence'}. """ from google.cloud import vision from protobuf_to_dict import protobuf_to_dict image_bytes = ndarray_to_bytes(image) image = vision.types.Image(content=image_bytes) response = self.model.safe_search_detection(image=image) predictions = protobuf_to_dict(response)['safe_search_annotation'] return predictions