def make_image_0(): P = objs.PlatonicSpheresCollection(pos, rad) H = psfs.AnisotropicGaussian() I = ilms.BarnesStreakLegPoly2P1D(npts=(20, 10), local_updates=True) B = GlobalScalar('bkg', 0.0) C = GlobalScalar('offset', 0.0) I.randomize_parameters() return states.ImageState(im, [B, I, H, P, C], pad=16, model_as_data=True)
def makestate(im, pos, rad, slab=None, mem_level='hi'): """ Workhorse for creating & optimizing states with an initial centroid guess. This is an example function that works for a particular microscope. For your own microscope, you'll need to change particulars such as the psf type and the orders of the background and illumination. Parameters ---------- im : :class:`~peri.util.RawImage` A RawImage of the data. pos : [N,3] element numpy.ndarray. The initial guess for the N particle positions. rad : N element numpy.ndarray. The initial guess for the N particle radii. slab : :class:`peri.comp.objs.Slab` or None, optional If not None, a slab corresponding to that in the image. Default is None. mem_level : {'lo', 'med-lo', 'med', 'med-hi', 'hi'}, optional A valid memory level for the state to control the memory overhead at the expense of accuracy. Default is `'hi'` Returns ------- :class:`~peri.states.ImageState` An ImageState with a linked z-scale, a ConfocalImageModel, and all the necessary components with orders at which are useful for my particular test case. """ if slab is not None: o = comp.ComponentCollection( [ objs.PlatonicSpheresCollection(pos, rad, zscale=zscale), slab ], category='obj' ) else: o = objs.PlatonicSpheresCollection(pos, rad, zscale=zscale) p = exactpsf.FixedSSChebLinePSF() npts, iorder = _calc_ilm_order(im.get_image().shape) i = ilms.BarnesStreakLegPoly2P1D(npts=npts, zorder=iorder) b = ilms.LegendrePoly2P1D(order=(9 ,3, 5), category='bkg') c = comp.GlobalScalar('offset', 0.0) s = states.ImageState(im, [o, i, b, c, p]) runner.link_zscale(s) if mem_level != 'hi': s.set_mem_level(mem_level) opt.do_levmarq(s, ['ilm-scale'], max_iter=1, run_length=6, max_mem=1e4) return s
def create_img(): """Creates an image, as a `peri.util.Image`, which is similar to the image in the tutorial""" # 1. particles + coverslip rad = 0.5 * np.random.randn(POS.shape[0]) + 4.5 # 4.5 +- 0.5 px particles part = objs.PlatonicSpheresCollection(POS, rad, zscale=0.89) slab = objs.Slab(zpos=4.92, angles=(-4.7e-3, -7.3e-4)) objects = comp.ComponentCollection([part, slab], category='obj') # 2. psf, ilm p = exactpsf.FixedSSChebLinePSF(kfki=1.07, zslab=-29.3, alpha=1.17, n2n1=0.98, sigkf=-0.33, zscale=0.89, laser_wavelength=0.45) i = ilms.BarnesStreakLegPoly2P1D(npts=(16,10,8,4), zorder=8) b = ilms.LegendrePoly2P1D(order=(7,2,2), category='bkg') off = comp.GlobalScalar(name='offset', value=-2.11) mdl = models.ConfocalImageModel() st = states.ImageState(util.NullImage(shape=[48,64,64]), [objects, p, i, b, off], mdl=mdl, model_as_data=True) b.update(b.params, BKGVALS) i.update(i.params, ILMVALS) im = st.model + np.random.randn(*st.model.shape) * 0.03 return util.Image(im)
plot_averaged_residuals(st) # Next, let's check the illumination field. For this, we load a different # image, one that I've taken of just dyed fluid. This image also has a # coverslip in it, at the bottom. For now, we'll ignore this coverlip by # setting the tile to be a specific region of z in the image. Moreover, # since I know that our confocal has some scan issues at the edges of the # image, I'll also crop out the image edges with the tile: im_ilm = util.RawImage('./ilm_test.tif', tile=util.Tile([48, 0, 0], [49, 100, 100])) # also located in the scripts folder # Looking at the image, the illlumination is very stripey, due to the line-scan # nature of our confocal. To account for this, we use a stripe-based ilm: ilm = ilms.BarnesStreakLegPoly2P1D(npts=(50, 30, 20, 13, 7, 7, 7), zorder=1) # (we only use a zorder of 1 since we've truncated to 1 pixel in z). # Our real model will use a point-spread function that will blur out the ilm # field slightly more. So we check the fit with a model that includes the # type of point-spread function that we will use. A model that blur with a # point-spread function takes considerably more time to evaluate than a # SmoothFieldModel, so if you're not sure if your ilm is high enough order # you should first check with a faster SmoothFieldModel. psf = exactpsf.FixedSSChebLinePSF() st = states.ImageState(im_ilm, [ilm, psf], mdl=models.BlurredFieldModel()) opt.do_levmarq(st, st.params) # Plotting the residuals shows that they're good, aside from scan noise # inherent to the line CCD camera:
import numpy from peri.comp import objs coverslip = objs.Slab(zpos=6) particle_positions = numpy.load('../../Downloads/particle-positions.npy') particle_radii = 5.0 particles = objs.PlatonicSpheresCollection(particle_positions, particle_radii) from peri.comp import comp objects = comp.ComponentCollection([particles, coverslip], category='obj') from peri.comp import ilms illumination = ilms.BarnesStreakLegPoly2P1D(npts=(16, 10, 8, 4), zorder=8) background = ilms.LegendrePoly2P1D(order=(7, 2, 2), category='bkg') offset = comp.GlobalScalar(name='offset', value=0.) from peri.comp import exactpsf point_spread_function = exactpsf.FixedSSChebLinePSF() from peri import models model = models.ConfocalImageModel() print(model)
from peri import states, util, models from peri.comp import psfs, objs, ilms, GlobalScalar, ComponentCollection from peri.test import nbody import peri.opt.optimize as opt import peri.opt.addsubtract as addsub im = util.NullImage(shape=(32, ) * 3) pos, rad, tile = nbody.create_configuration(3, im.tile) P = ComponentCollection( [objs.PlatonicSpheresCollection(pos, rad), objs.Slab(2)], category='obj') H = psfs.AnisotropicGaussian() I = ilms.BarnesStreakLegPoly2P1D(npts=(25, 13, 3), zorder=2, local_updates=False) B = ilms.LegendrePoly2P1D(order=(3, 1, 1), category='bkg', constval=0.01) C = GlobalScalar('offset', 0.0) I.randomize_parameters() s = states.ImageState(im, [B, I, H, P, C], pad=16, model_as_data=True)