def getScores(lex, source_words, target_words, weights): M = len(lex) # sort according to weights (increasing) (_, pi) = perm.sort(weights, reverse=False) source_words = source_words[pi] target_words = target_words[pi] N = len(source_words) assert N == len(target_words) C = np.zeros((N, 3)) # [1, exists in source, target matches] dict_keys = lex.keys() for i, (source_word) in enumerate(source_words): target_word = target_words[i] C[i, 0] = 1 # always 1 if source_word in dict_keys: C[i, 1] = 1 # word exists as a source word #if target_word in lex[source_word]: if is_valid_match(lex, source_word, target_word): C[i, 2] = 1 # (source, target) words are correctly matched according to dict C = np.cumsum(C, 0) # cumulative sum per column scores = common.Struct() scores.M = M scores.precision = C[:, 2] / C[:, 1] scores.recall = C[:, 2] / M scores.F1 = F1(scores.precision, scores.recall) return scores # C should allow computing precision/recall/F1 for any cutoff value.
def find_matching(options, wordsX, wordsY): # finds a permutation pi that best matches Y to X # The optimization procedure works as follows: # suppose there are 2000 words to be matched, 100 seed words and step size is 100 # The seed is stored at the end (so, X[i, :] matches Y[i, :] for i > 2000] in all iterations # at each iteration t (starting at t=0): # 1. compute the CCA on the last 100 + 100*t entries # 2. compute the CCA representation of all words # 3. perform a matching on the first N=2000 words to get pi_t # 4. sort the first 2000 matches in descending order. # initially, assume that pi is ID N = len(wordsX.words) M = N - options.seed_length # The first M entries can be permuted. The rest are fixed GX = None GY = None options.cca_weights = None sorted_edge_cost = None fixed_point = False for t in range(0, options.T): options.t = t Nt = M - options.step_size * t # STEP 0: when the feature dimension is high, ICD the seed and project the rest if wordsX.isPickled(): wordsX.ICD_representation(Nt, options.eta) wordsY.ICD_representation(Nt, options.eta) # STEP 1: compute CCA model on the well matched portion of the matching (which includes the fixed seed) fixedX = wordsX.features[Nt:, :] fixedY = wordsY.features[Nt:, :] if options.useCCAWeights == 1 and sorted_edge_cost is not None: q = np.square(sorted_edge_cost[Nt:]) bandwidth = np.median(q) options.cca_weights = np.exp(-q / (2 * bandwidth)) # exp is useful when dist is used # if options.noise_level > 0: # fixedX += options.noise_level*common.randn(fixedX.shape) # fixedY += options.noise_level*common.randn(fixedY.shape) print >> sys.stderr, colored("CCA dimensions =", "green"), len(fixedX) cca_model = CU.learn(fixedX, fixedY, options) print >> sys.stderr, len(cca_model.p), "Top 10 correlation coefficients:", cca_model.p[:10] # STEP 2: compute CCA representation of all samples print >> sys.stderr, "norms", norm(wordsX.features), norm(wordsY.features) Z = CU.project(options, cca_model, wordsX.features, wordsY.features) print >> sys.stderr, "Z", norm(Z.X), norm(Z.Y) # STEP 3: compute weight matrix and run matching (approximate) algorithm if options.alpha > 0: GX = wordsX.materializeGraph() GY = wordsY.materializeGraph() print >> sys.stderr, colored("Computing matching weight matrix.", "green") W, U0, Z0 = MU.makeWeights(options, Z.X, Z.Y, GX, GY) print >> sys.stderr, "Matching." (cost, pi_t, edge_cost) = MU.exactMatch(W[:M, :M]) # STEP 4: sort the words, such that the best matches are at the end. # note that pi_t is of length M < N and that (sorted_edge_cost, I) = perm.sort(edge_cost, reverse=True) sorted_edge_cost = np.concatenate((sorted_edge_cost, np.zeros(N - M))) if perm.isID(pi_t): # the best permutation is the identity fixed_point = True else: wordsX.permuteFirstWords(I) wordsY.permuteFirstWords(pi_t[I]) # END OF ITERATION: output Matching print >> sys.stderr, "cost =", cost, "latent inner product = ", np.sum(Z.X.A * Z.Y.A) # MU.printMatching(wordsX.words[:M], wordsY.words[:M], sorted_edge_cost[:M], options.gold_lex) if options.gold_lex is not None: scores = BU.getScores(options.gold_lex, wordsX.words[:M], wordsY.words[:M], sorted_edge_cost[:M]) BU.outputScores(scores, options.title) print "---------- ", "iteration = ", (t + 1), "/", options.T, "----------" sys.stdout.flush() if fixed_point: break # either we reached the maximum number of iterations, or a fixed point log(100, "Stopped after, ", (t + 1), "iterations. Fixed point =", fixed_point) IO.writeString( options.matchingFilename, MU.toString(wordsX.words[:M], wordsY.words[:M], sorted_edge_cost[:M], options.gold_lex), ) if options.is_mock: log("Hamming distance:", perm.hamming(wordsX.words, wordsY.words)) return wordsX, wordsY, sorted_edge_cost, cost