Example #1
0
def main(args):
    """
    Main function
    """
    if args.random:
        # Generate random permutation for initial sigma, tau
        sigma = Perm.random(string.ascii_uppercase)
        tau = Perm.random(string.ascii_uppercase)
    else:
        sigma, tau = map(permutation_from_key, args.keys)
    args.verbose and print("sigma = {}".format(sigma))
    args.verbose and print("tau   = {}".format(tau))
    with args.in_file, args.out_file:
        if args.encrypt:
            args.verbose and print("Enciphering...")
            process_func = autoperm_encipher
        else:
            args.verbose and print("Deciphering...")
            process_func = autoperm_decipher
        if args.preserve:
            process_func.preserve(args.in_file, args.out_file, sigma, tau)
        else:
            process_func.strip(args.in_file,
                               args.out_file,
                               sigma,
                               tau,
                               block=args.block,
                               width=args.width,
                               compare=args.compare,
                               lowercase=args.lowercase)
Example #2
0
 def initialise_state(self):
     frequencies = collections.Counter(self.text)
     self.key = Perm({
         a: b
         for (a, _), (b, _) in zip(
             frequencies.most_common(),
             collections.Counter(ENGLISH_FREQUENCIES).most_common())
     })
Example #3
0
def permutation_from_key(key):
    """
    Generate a low-level permutation from a key consisting of letters, by
    removing repeated letters and filling in the rest of the alphabet going from
    the last letter. Eg "linustorvalds" as key becomes
    ABCDEFGHIJKLMNOPQRSTUVWXYZ
    LINUSTORVADEFGHJKMPQWXYZBC
    This method is /not/ completely standard. Wikipedia would have you believe
    that you should just chug along with the rest of the alphabet from the first
    letter, but this bleeds huge amounts of information into your permutation,
    as xyz will often map to xyz, whereas here they're basically randomly
    offset. (Wikipedia's example sneakily has a z in the key so you don't notice
    this)

    This function generously strips any punctuation and makes the string
    uppercase, so should be fairly robust on any input.
    """
    mapping = {}
    alphabet = set(string.ascii_uppercase)
    from_iterable = iter(string.ascii_uppercase)
    # use an OrderedDict so as to retain compatibility with 3.6 spec
    key_unique = "".join(collections.OrderedDict.fromkeys(strip_punc(key)))
    # in case of empty key (although that's not a good idea)
    k = 'A'
    for k, a in zip(key_unique, from_iterable):
        mapping[a] = k
        alphabet.remove(k)
    alphabet = sorted(alphabet)
    start_index = 0
    while start_index < len(alphabet) and alphabet[start_index] < k:
        start_index += 1
    for ind, k in enumerate(from_iterable):
        mapping[k] = alphabet[(start_index + ind) % len(alphabet)]
    return Perm(mapping)
Example #4
0
 def cyclic(cls, n):
     """
     Returns the cyclic group of order n
     """
     return cls(
         {Perm(n)(tuple((j + i) % n for i in range(n)))
          for j in range(n)})
Example #5
0
class SubstitutionHillClimber(HillClimber):
    __slots__ = "key",

    def initialise_state(self):
        frequencies = collections.Counter(self.text)
        self.key = Perm({
            a: b
            for (a, _), (b, _) in zip(
                frequencies.most_common(),
                collections.Counter(ENGLISH_FREQUENCIES).most_common())
        })

    def format_state(self):
        print("key:\n{}".format(self.key.inverse().table_format()))
        print("plaintext:\n{}...".format("".join(
            substitution.func(self.text, self.key))[:1000]))

    def modify_state(self):
        # try all other permutations, randomly ordered. The shuffling here
        # doesn't take place in a bottleneck, and it hopefully prevents the
        # search path from becoming too homogeneous.
        yield from (
            self.key * p
            for p in random.sample(MOD_PERMUTATIONS, k=len(MOD_PERMUTATIONS)))

    def get_score(self, state):
        return quadgram_score.no_strip(substitution.func(self.text, state))

    def set_state(self, state):
        self.key = state

    def get_state(self):
        return self.key
 def modify_state(self):
     # try a random state
     yield tuple(Perm.random(string.ascii_uppercase) for _ in range(2))
     # try modifying just one of sigma or tau
     yield from (
         (self.sigma * p, self.tau)
         for p in random.sample(MOD_PERMUTATIONS, k=len(MOD_PERMUTATIONS)))
     yield from (
         (self.sigma, self.tau * p)
         for p in random.sample(MOD_PERMUTATIONS, k=len(MOD_PERMUTATIONS)))
Example #7
0
File: fft.py Project: dt1483/SnFFT
def fft(f, ferrers):
    '''
    Compute Clausen's FFT:
    Ref: 'FAST FOURIER TRANSFORMS FOR SYMMETRIC GROUPS: THEORY AND IMPLEMENTATION'
    By MICHAEL CLAUSEN AND ULRICH BAUM
    http://www.ams.org/journals/mcom/1993-61-204/S0025-5718-1993-1192969-X/S0025-5718-1993-1192969-X.pdf

    f: function from S_n to \mathbb{R}
    ferrers: a FerrersDiagram object (indicates which irrep to compute the transform over)
    Returns a matrix of size d x d, where d is the number of standard tableaux of the FerrersDiagram shape

    Note that the specific permutation group S_n is given by the size of the ferrers diagram
    '''
    # iterate over cosets
    if ferrers.size == 1:
        return np.eye(1) * f(Perm([(1, )]))

    n = ferrers.size
    d_branches = ferrers.branch_down()
    tabs = ferrers.tableaux

    d_lambda = len(tabs)
    f_hat = np.zeros((d_lambda, d_lambda))
    for i in range(1, n + 1):
        cyc = Perm([tuple(j for j in range(i, n + 1))])
        f_i = lambda pi: f(
            cyc * pi
        )  # assume that the input function is a function on Perm objects

        # irrep function (aka yor) requires the 2nd argument to be a list of tuples
        rho_i = irrep(ferrers, cyc)
        idx = 0  # used to figure out where the direct sum should add things
        res = np.zeros(f_hat.shape)

        for lambda_minus in d_branches:
            fft_fi = fft(f_i, lambda_minus)

            d = fft_fi.shape[0]
            res[idx:idx + d, idx:idx + d] += fft_fi
            idx += d

        f_hat += rho_i.dot(res)
    return f_hat
Example #8
0
 def dihedral(cls, n):
     """
     Returns the dihedral group of order 2n.
     """
     # if n <= 2:
     #     return Group.cyclic(n) ** 2
     rots = cls.cyclic(n).perms
     refls = {Perm(n)(tuple((j - i) % n for i in range(n)))
                 for j in range(n)}
     return cls(rots | refls)
Example #9
0
def autoperm_encipher(plaintext, sigma, tau):
    """
    Encrypt
    """
    for a, b in chunk(plaintext, 2):
        if b is None:
            yield sigma[a]
        else:
            yield from (sigma[a], tau[b])
            transposition = Perm.from_cycle([a, b])
            sigma *= transposition
            tau *= transposition
Example #10
0
def autoperm_decipher(ciphertext, sigma, tau):
    """
    Decrypt
    """
    sigma_inverse = sigma.inverse()
    tau_inverse = tau.inverse()
    for a, b in chunk(ciphertext, 2):
        if b is None:
            yield sigma_inverse[a]
        else:
            a_plain = sigma_inverse[a]
            b_plain = tau_inverse[b]
            yield from (a_plain, b_plain)
            transposition = Perm.from_cycle([a_plain, b_plain])
            sigma_inverse = transposition * sigma_inverse
            tau_inverse = transposition * tau_inverse
Example #11
0
 def generate(cls, n, elements, limit=math.inf):
     """
     Generate more elements from some generating elements
     """
     i = 1
     Id = Perm(n)()
     G = cls({Id})
     to_multiply = [Id]
     new = []
     while len(to_multiply) != 0:
         for a in to_multiply:
             for b in elements:
                 c = a * b
                 if c not in G.perms:
                     i += 1
                     if i > limit:
                         return None
                     G.perms.add(c)
                     new.append(c)
         to_multiply = new
         new = []
     return G
Example #12
0
    def __init__(self,
                 network_type,
                 spp,
                 renders_dir,
                 spp_additional=None,
                 mapmode=None,
                 uniform=False,
                 dataset_filter=None,
                 dualmode=False):
        self.is_cuda = True  # torch.cuda.is_available()

        self.criterion = self.right_type(nn.L1Loss(size_average=True))
        self.criterion_mse = self.right_type(nn.MSELoss(size_average=True))
        self.criterion_l1 = self.right_type(nn.L1Loss(size_average=True))

        self.loss_relative_L1 = self.right_type(special_losses.RelativeL1())
        self.loss_edge_loss = self.right_type(special_losses.EdgeLoss())
        self.loss_relative_edge_loss = self.right_type(
            special_losses.RelativeEdgeLoss())

        self.sc_log1p3 = self.right_type(RenderSimulator.SC_log1p3())

        self.mapmode = mapmode

        self.uniform = uniform
        self.dataset_filter = dataset_filter

        self.optimizer = None

        self.out_dir = "."

        self.dualmode = dualmode

        self.writer = SummaryWriter()
        self.writer_count = 0

        self.tensorboard_every = 10000
        self.tensorboard_graph_every = 20

        self.monitor_writer = special_losses.MonitorWriter(
            self.writer, self.tensorboard_graph_every, self.tensorboard_every,
            self)

        self.loss_combo = special_losses.LossCombo(
            self.monitor_writer,
            ["relative_l1", self.loss_relative_L1, 1],
            ["relative_edge_loss", self.loss_relative_edge_loss, 1],
        )

        self.spp_criterion = self.criterion_mse

        self.running_loss = 0.0
        self.running_loss_count = 0.0
        self.print_error = 5
        self.print_weights = 0
        self.batch_size = 1 if config.config.small_gpu else 6
        self.loss_graph = []
        self.epoch = 0
        self.apply_dir = None

        self.spp_additional = float(spp_additional)

        self.trainloader = None
        self.testloader = None
        self.prenormalized = False

        self.gamma = 1.0
        self.mode = None
        self.model_loaded = False

        self.colorchannels = 3

        self.output_target_buffers = [
            Buffer(Perm("color", 0, "COLOR"), "color_in")
        ]
        self.output_target_buffers2 = {}

        self.show_img = True
        self.vis = True
        self.generate_gt = False

        self.nodes_real = None
        self.no_gt = False

        self.crop_network = True

        self.model_save_path = "cur_model.model"

        network_type = network_type.split(":")
        self.network_type_opt = set(network_type)

        self.spp = spp

        self.renders_dir = renders_dir

        self.opt_passspp = True
        self.opt_passspp_mult = 1 if self.take_type_opt("passspp") else 0

        assert self.opt_passspp_mult == 0  # we don't do it anymore

        self.opt_mixset = self.take_type_opt("mixset")
        self.opt_sppopt = self.take_type_opt("sppopt")

        self.prenormalized = True

        self.spp_base = 1

        if '' in self.network_type_opt:
            self.network_type_opt.remove('')
        assert len(self.network_type_opt) == 0

        self.network_single_prefilter = False

        normn = "color_in_log"

        bc = [
            Buffer(Perm("color", i, "COLOR"), normalizer_name=normn)
            for i in range(self.colorchannels)
        ]
        color_out = [
            Buffer(Perm("color", i, "COLOR_CBF"), "color_in")
            for i in range(self.colorchannels)
        ]
        for i in range(self.colorchannels):

            self.output_target_buffers2["color" + str(i)] = bc[i]

        data_in = []
        for i in range(3):
            data_in.append(Buffer(Perm("color", i, "TEXTURE"), "texture"))

        data_in.extend([
            Buffer("_feature_NORM_1_X", "norm1"),
            Buffer("_feature_NORM_1_Y", "norm1"),
            Buffer("_feature_NORM_1_Z", "norm1"),
            Buffer("_feature_DEPTH_1", "depth"),
        ])

        data_in.extend([
            Buffer("_feature_SHADOW_1_Y", "shadow"),
        ])

        color_layers = [
            self.output_target_buffers2[key]
            for key in sorted(self.output_target_buffers2.keys())
        ]

        data_in = color_layers + data_in

        data_out = []
        data_out.extend(color_layers)

        self.networks = {}

        data_out = color_layers

        self.forward_pass = self.forward_pass_adapt2

        denoise_net = Denoising.NetBig(len(data_in),
                                       3,
                                       passspp=self.opt_passspp)

        self.networks["denoise"] = Denoising.NetDaptor(
            self, self.right_type(denoise_net), data_in, data_out)

        rnet = RenderSimulator.NetRenderMulti3()

        self.networks["selector"] = Denoising.NetDaptor(
            self, self.right_type(rnet), data_in, data_out)

        spp_map = nn.Sequential(
            Denoising.NetBig(11, 1),
            Denoising.NetMapBound(scale=(self.spp_additional + self.spp_base),
                                  bias=0.0))

        self.networks["spp_map"] = Denoising.NetDaptor(
            self, self.right_type(spp_map), data_in, data_out)
        self.data_layer = DataLayer(
            all_fast_buffers2=self.get_all_fast_buffers(),
            all_gt_buffers2=self.get_all_gt_buffers(),
            permutator_group2=permutator_group,
            normalizers2=normalizers,
            output_target_buffers=self.output_target_buffers2)

        self.gglue = Gglue(self.networks, {})

        self.super_dataset = None
        self.subset_dataset = None
        self.subset_dataset_loader = None

        self.active_nodes = None
 def initialise_state(self):
     self.sigma = Perm.random(string.ascii_uppercase)
     self.tau = Perm.random(string.ascii_uppercase)
Example #14
0
 def symmetric(cls, n):
     return cls(set(map(Perm(n), itertools.permutations(range(n)))))
Example #15
0
import itertools
import math
import sys
import random
import time
import collections

import abc

from perm import Perm
from substitution import substitution
from quadgram_metric import quadgram_score
from metric import ENGLISH_FREQUENCIES

MOD_PERMUTATIONS = [
    Perm.from_cycle(transp)
    for transp in itertools.combinations(string.ascii_uppercase, 2)
]


class HillClimber(abc.ABC):
    """
    Class keeping track of the various bits of state needed to climb hills
    """
    __slots__ = "text", "best_score", "total_keys_tried", "update_interval"

    def __init__(self, text, update_interval=1000):
        self.text = text
        self.initialise_state()
        self.best_score = self.get_score(self.get_state())
        self.total_keys_tried = 0