Example #1
0
table1 = [['lines',],
          ['A',], 
          [1,], 
          [True,], 
          ['C',], 
          [7,], 
          [False,],
          ['B',], 
          [2,], 
          [False,],
          ['C'], 
          [9,]]

from petl import unflatten, look
input = ['A', 1, True, 'C', 7, False, 'B', 2, False, 'C', 9]
table = unflatten(input, 3)
look(table)
# a table and field name can also be provided as arguments
look(table1)
table2 = unflatten(table1, 'lines', 3)
look(table2)


# tocsv

table = [['foo', 'bar'],
         ['a', 1],
         ['b', 2],
         ['c', 2]]

from petl import tocsv, look
Example #2
0
table1 = [['lines',],
          ['A',], 
          [1,], 
          [True,], 
          ['C',], 
          [7,], 
          [False,],
          ['B',], 
          [2,], 
          [False,],
          ['C'], 
          [9,]]

from petl import unflatten, look
input = ['A', 1, True, 'C', 7, False, 'B', 2, False, 'C', 9]
table = unflatten(input, 3)
look(table)
# a table and field name can also be provided as arguments
look(table1)
table2 = unflatten(table1, 'lines', 3)
look(table2)


# tocsv

table = [['foo', 'bar'],
         ['a', 1],
         ['b', 2],
         ['c', 2]]

from petl import tocsv, look
Example #3
0
]
table2 = etl.pivot(table1, "region", "gender", "units", sum)
table2
table3 = etl.pivot(table1, "region", "style", "units", sum)
table3
table4 = etl.pivot(table1, "gender", "style", "units", sum)
table4


# flatten()
###########

import petl as etl

table1 = [["foo", "bar", "baz"], ["A", 1, True], ["C", 7, False], ["B", 2, False], ["C", 9, True]]
list(etl.flatten(table1))


# unflatten()
#############

import petl as etl

a = ["A", 1, True, "C", 7, False, "B", 2, False, "C", 9]
table1 = etl.unflatten(a, 3)
table1
# a table and field name can also be provided as arguments
table2 = [["lines"], ["A"], [1], [True], ["C"], [7], [False], ["B"], [2], [False], ["C"], [9]]
table3 = etl.unflatten(table2, "lines", 3)
table3
Example #4
0
import pandas as pd
import numpy as np
import petl as pt
from petl import filldown, fillright, fillleft, look
from petl import unflatten

input = ['A', 3, True, None, 7, False, 'B', 2, False, 'C', 9]
table = unflatten(input, 3)
print(table)

a = filldown(table)
print(a)
Example #5
0
import petl as etl
table1 = [['foo', 'bar', 'baz'],
          ['A', 1, True],
          ['C', 7, False],
          ['B', 2, False],
          ['C', 9, True]]
list(etl.flatten(table1))


# unflatten()
#############

import petl as etl
a = ['A', 1, True, 'C', 7, False, 'B', 2, False, 'C', 9]
table1 = etl.unflatten(a, 3)
table1
# a table and field name can also be provided as arguments
table2 = [['lines'],
          ['A'],
          [1],
          [True],
          ['C'],
          [7],
          [False],
          ['B'],
          [2],
          [False],
          ['C'],
          [9]]
table3 = etl.unflatten(table2, 'lines', 3)