Example #1
0
def getprobability(object, grasps):
    obj_name = object[1]
    sdf_name = object[2]
    obj_mesh = of.ObjFile(obj_name).read()
    sdf_ = sf.SdfFile(sdf_name).read()
    obj = go.GraspableObject3D(sdf_,
                               mesh=obj_mesh,
                               key=object[0].replace("_features.txt", ""),
                               model_name=obj_name)
    config_name = "cfg/correlated.yaml"
    config = ec.ExperimentConfig(config_name)
    np.random.seed(100)

    brute_force_iter = config['bandit_brute_force_iter']
    max_iter = config['bandit_max_iter']
    confidence = config['bandit_confidence']
    snapshot_rate = config['bandit_snapshot_rate']
    tc_list = [
        tc.MaxIterTerminationCondition(max_iter),
        #		tc.ConfidenceTerminationCondition(confidence)
    ]

    # run bandits!
    graspable_rv = pfc.GraspableObjectGaussianPose(obj, config)
    f_rv = scipy.stats.norm(config['friction_coef'],
                            config['sigma_mu'])  # friction Gaussian RV

    # compute feature vectors for all grasps
    feature_extractor = ff.GraspableFeatureExtractor(obj, config)
    all_features = feature_extractor.compute_all_features(grasps)

    candidates = []
    for grasp, features in zip(grasps, all_features):
        grasp_rv = pfc.ParallelJawGraspGaussian(grasp, config)
        pfc_rv = pfc.ForceClosureRV(grasp_rv, graspable_rv, f_rv, config)
        if features is None:
            pass
        else:
            pfc_rv.set_features(features)
            candidates.append(pfc_rv)

    def phi(rv):
        return rv.features

    nn = kernels.KDTree(phi=phi)
    kernel = kernels.SquaredExponentialKernel(sigma=config['kernel_sigma'],
                                              l=config['kernel_l'],
                                              phi=phi)
    objective = objectives.RandomBinaryObjective()

    # uniform allocation for true values
    ua = das.UniformAllocationMean(objective, candidates)
    ua_result = ua.solve(
        termination_condition=tc.MaxIterTerminationCondition(brute_force_iter),
        snapshot_rate=snapshot_rate)
    estimated_pfc = models.BetaBernoulliModel.beta_mean(
        ua_result.models[-1].alphas, ua_result.models[-1].betas)
    return estimated_pfc
Example #2
0
def run_ua_on(obj, config):
    # sample grasps
    sample_start = time.clock()
    if config['grasp_sampler'] == 'antipodal':
        logging.info('Using antipodal grasp sampling')
        sampler = ags.AntipodalGraspSampler(config)
        grasps = sampler.generate_grasps(
            obj, check_collisions=config['check_collisions'])

        # pad with gaussian grasps
        num_grasps = len(grasps)
        min_num_grasps = config['min_num_grasps']
        if num_grasps < min_num_grasps:
            target_num_grasps = min_num_grasps - num_grasps
            gaussian_sampler = gs.GaussianGraspSampler(config)
            gaussian_grasps = gaussian_sampler.generate_grasps(
                obj,
                target_num_grasps=target_num_grasps,
                check_collisions=config['check_collisions'])
            grasps.extend(gaussian_grasps)
    else:
        logging.info('Using Gaussian grasp sampling')
        sampler = gs.GaussianGraspSampler(config)
        grasps = sampler.generate_grasps(
            obj, check_collisions=config['check_collisions'])

    # generate pfc candidates
    graspable_rv = pfc.GraspableObjectGaussianPose(obj, config)
    f_rv = scipy.stats.norm(config['friction_coef'], config['sigma_mu'])
    candidates = []
    for grasp in grasps:
        logging.info('Adding grasp %d candidate' % (len(candidates)))
        grasp_rv = pfc.ParallelJawGraspGaussian(grasp, config)
        pfc_rv = pfc.ForceClosureRV(grasp_rv, graspable_rv, f_rv, config)
        candidates.append(pfc_rv)
    logging.info('%d candidates', len(candidates))

    brute_force_iter = config['bandit_brute_force_iter'] * len(candidates)
    snapshot_rate = brute_force_iter
    objective = objectives.RandomBinaryObjective()

    ua = das.UniformAllocationMean(objective, candidates)
    logging.info('Running uniform allocation for true pfc.')
    bandit_start = time.clock()
    ua_result = ua.solve(
        termination_condition=tc.MaxIterTerminationCondition(brute_force_iter),
        snapshot_rate=snapshot_rate)
    bandit_end = time.clock()
    bandit_duration = bandit_end - bandit_start
    logging.info('Uniform allocation (%d iters) took %f sec' %
                 (brute_force_iter, bandit_duration))

    return ua_result
Example #3
0
def load_candidate_grasps(obj, chunk):
    # load grasps from database
    sample_start = time.clock()
    grasps = chunk.load_grasps(obj.key)
    sample_end = time.clock()
    sample_duration = sample_end - sample_start
    logging.info('Loaded %d grasps' % (len(grasps)))
    logging.info('Grasp candidate loading took %f sec' % (sample_duration))

    if not grasps:
        logging.info('Skipping %s' % (obj.key))
        return None

    # load features for all grasps
    feature_start = time.clock()
    feature_loader = ff.GraspableFeatureLoader(obj, chunk.name, config)
    all_features = feature_loader.load_all_features(
        grasps)  # in same order as grasps
    feature_end = time.clock()
    feature_duration = feature_end - feature_start
    logging.info('Loaded %d features' % (len(all_features)))
    logging.info('Grasp feature loading took %f sec' % (feature_duration))

    # run bandits!
    graspable_rv = pfc.GraspableObjectGaussianPose(obj, config)
    f_rv = scipy.stats.norm(config['friction_coef'],
                            config['sigma_mu'])  # friction Gaussian RV

    candidates = []
    out_rate = 50
    for k, (grasp, features) in enumerate(zip(grasps, all_features)):
        if k % out_rate == 0:
            logging.info('Adding grasp %d' % (k))
        grasp_rv = pfc.ParallelJawGraspGaussian(grasp, config)
        pfc_rv = pfc.ForceClosureRV(grasp_rv, graspable_rv, f_rv, config)
        if features is None:
            logging.info('Could not compute features for grasp.')
        else:
            pfc_rv.set_features(features)
            candidates.append(pfc_rv)

    return candidates
Example #4
0
def label_correlated(obj, chunk, dest, config, plot=False, load=True):
    """Label an object with grasps according to probability of force closure,
    using correlated bandits."""
    bandit_start = time.clock()
    #np.random.seed(100)

    # sample grasps
    sample_start = time.clock()
                              
    if config['grasp_sampler'] == 'antipodal':
        logging.info('Using antipodal grasp sampling')
        sampler = ags.AntipodalGraspSampler(config)
        grasps = sampler.generate_grasps(obj, check_collisions=config['check_collisions'], vis=False)

        # pad with gaussian grasps
        num_grasps = len(grasps)
        min_num_grasps = config['min_num_grasps']
        if num_grasps < min_num_grasps:
            target_num_grasps = min_num_grasps - num_grasps
            gaussian_sampler = gs.GaussianGraspSampler(config)        
            gaussian_grasps = gaussian_sampler.generate_grasps(obj, target_num_grasps=target_num_grasps,
                                                                   check_collisions=config['check_collisions'], vis=plot)
            grasps.extend(gaussian_grasps)
    else:
        logging.info('Using Gaussian grasp sampling')
        sampler = gs.GaussianGraspSampler(config)        
        grasps = sampler.generate_grasps(obj, check_collisions=config['check_collisions'], vis=plot,
                                             grasp_gen_mult = 6)
    sample_end = time.clock()
    sample_duration = sample_end - sample_start
    logging.info('Loaded %d grasps' %(len(grasps)))
    logging.info('Grasp candidate loading took %f sec' %(sample_duration))

    if not grasps:
        logging.info('Skipping %s' %(obj.key))
        return None

    # extract load features for all grasps
    feature_start = time.clock()
    feature_extractor = ff.GraspableFeatureExtractor(obj, config)
    all_features = feature_extractor.compute_all_features(grasps)
    feature_end = time.clock()
    feature_duration = feature_end - feature_start
    logging.info('Loaded %d features' %(len(all_features)))
    logging.info('Grasp feature loading took %f sec' %(feature_duration))

    # bandit params
    num_trials = config['num_trials']
    brute_force_iter = config['bandit_brute_force_iter']
    max_iter = config['bandit_max_iter']
    confidence = config['bandit_confidence']
    snapshot_rate = config['bandit_snapshot_rate']
    brute_snapshot_rate = config['bandit_brute_force_snapshot_rate']
    tc_list = [
        tc.MaxIterTerminationCondition(max_iter),
        ]

    # set up randome variables
    graspable_rv = pfc.GraspableObjectGaussianPose(obj, config)
    f_rv = scipy.stats.norm(config['friction_coef'], config['sigma_mu']) # friction Gaussian RV

    candidates = []
    for grasp, features in zip(grasps, all_features):
        logging.info('Adding grasp %d' %len(candidates))
        grasp_rv = pfc.ParallelJawGraspGaussian(grasp, config)
        pfc_rv = pfc.ForceClosureRV(grasp_rv, graspable_rv, f_rv, config)
        if features is None:
            logging.info('Could not compute features for grasp.')
        else:
            pfc_rv.set_features(features)
            candidates.append(pfc_rv)

    # feature transform
    def phi(rv):
        return rv.features

    # create nn structs for kernels
    nn = kernels.KDTree(phi=phi)
    kernel = kernels.SquaredExponentialKernel(
        sigma=config['kernel_sigma'], l=config['kernel_l'], phi=phi)
    objective = objectives.RandomBinaryObjective()

    # uniform allocation for true values
    ua_brute = das.UniformAllocationMean(objective, candidates)
    logging.info('Running uniform allocation for true pfc.')
    ua_brute_result = ua_brute.solve(termination_condition=tc.MaxIterTerminationCondition(brute_force_iter),
                                     snapshot_rate=brute_snapshot_rate)
    final_model = ua_brute_result.models[-1]
    estimated_pfc = models.BetaBernoulliModel.beta_mean(final_model.alphas, final_model.betas)
    save_grasps(grasps, estimated_pfc, obj, dest, num_successes=final_model.alphas, num_failures=final_model.betas)

    # run bandits for several trials
    ua_rewards = []
    ts_rewards = []
    ts_corr_rewards = []

    for t in range(num_trials):
        logging.info('Trial %d' %(t))

        # Uniform sampling
        ua = das.UniformAllocationMean(objective, candidates)
        logging.info('Running Uniform allocation.')
        ua_result = ua.solve(termination_condition=tc.OrTerminationCondition(tc_list), snapshot_rate=snapshot_rate)

        # Thompson sampling
        ts = das.ThompsonSampling(objective, candidates)
        logging.info('Running Thompson sampling.')
        ts_result = ts.solve(termination_condition=tc.OrTerminationCondition(tc_list), snapshot_rate=snapshot_rate)

        # correlated Thompson sampling for even faster convergence
        ts_corr = das.CorrelatedThompsonSampling(
            objective, candidates, nn, kernel, tolerance=config['kernel_tolerance'])
        logging.info('Running correlated Thompson sampling.')
        ts_corr_result = ts_corr.solve(termination_condition=tc.OrTerminationCondition(tc_list), snapshot_rate=snapshot_rate)

        # compile results
        ua_normalized_reward = reward_vs_iters(ua_result, estimated_pfc)
        ts_normalized_reward = reward_vs_iters(ts_result, estimated_pfc)
        ts_corr_normalized_reward = reward_vs_iters(ts_corr_result, estimated_pfc)
        
        ua_rewards.append(ua_normalized_reward)
        ts_rewards.append(ts_normalized_reward)
        ts_corr_rewards.append(ts_corr_normalized_reward)

    # get the bandit rewards
    all_ua_rewards = np.array(ua_rewards)
    all_ts_rewards = np.array(ts_rewards)
    all_ts_corr_rewards = np.array(ts_corr_rewards)

    # compute avg normalized rewards
    avg_ua_rewards = np.mean(all_ua_rewards, axis=0)
    avg_ts_rewards = np.mean(all_ts_rewards, axis=0)
    avg_ts_corr_rewards = np.mean(all_ts_corr_rewards, axis=0)

    # kernel matrix
    kernel_matrix = kernel.matrix(candidates)

    return BanditCorrelatedExperimentResult(avg_ua_rewards, avg_ts_rewards, avg_ts_corr_rewards,
                                            estimated_pfc, ua_result.iters, kernel_matrix, obj_key=obj.key)
def test_window_correlation(width, num_steps, vis=True):
    import scipy
    import sdf_file, obj_file
    import discrete_adaptive_samplers as das
    import experiment_config as ec
    import feature_functions as ff
    import graspable_object as go  # weird Python issues
    import kernels
    import models
    import objectives
    import pfc
    import termination_conditions as tc

    np.random.seed(100)

    mesh_file_name = 'data/test/meshes/Co_clean.obj'
    sdf_3d_file_name = 'data/test/sdf/Co_clean.sdf'

    config = ec.ExperimentConfig('cfg/correlated.yaml')
    config['window_width'] = width
    config['window_steps'] = num_steps
    brute_force_iter = 100
    snapshot_rate = config['bandit_snapshot_rate']

    sdf = sdf_file.SdfFile(sdf_3d_file_name).read()
    mesh = obj_file.ObjFile(mesh_file_name).read()
    graspable = go.GraspableObject3D(sdf, mesh)
    grasp_axis = np.array([0, 1, 0])
    grasp_width = 0.1

    grasps = []
    for z in [-0.030, -0.035, -0.040, -0.045]:
        grasp_center = np.array([0, 0, z])
        grasp = g.ParallelJawPtGrasp3D(
            ParallelJawPtGrasp3D.configuration_from_params(
                grasp_center, grasp_axis, grasp_width))
        grasps.append(grasp)

    graspable_rv = pfc.GraspableObjectGaussianPose(graspable, config)
    f_rv = scipy.stats.norm(config['friction_coef'],
                            config['sigma_mu'])  # friction Gaussian RV

    # compute feature vectors for all grasps
    feature_extractor = ff.GraspableFeatureExtractor(graspable, config)
    all_features = feature_extractor.compute_all_features(grasps)

    candidates = []
    for grasp, features in zip(grasps, all_features):
        logging.info('Adding grasp %d' % len(candidates))
        grasp_rv = pfc.ParallelJawGraspGaussian(grasp, config)
        pfc_rv = pfc.ForceClosureRV(grasp_rv, graspable_rv, f_rv, config)
        pfc_rv.set_features(features)
        candidates.append(pfc_rv)

        if vis:
            _, (c1, c2) = grasp.close_fingers(graspable)
            plt.figure()
            c1_proxy = c1.plot_friction_cone(color='m')
            c2_proxy = c2.plot_friction_cone(color='y')
            plt.legend([c1_proxy, c2_proxy], ['Cone 1', 'Cone 2'])
            plt.title('Grasp %d' % (len(candidates)))

    objective = objectives.RandomBinaryObjective()
    ua = das.UniformAllocationMean(objective, candidates)
    logging.info('Running uniform allocation for true pfc.')
    ua_result = ua.solve(
        termination_condition=tc.MaxIterTerminationCondition(brute_force_iter),
        snapshot_rate=snapshot_rate)
    estimated_pfc = models.BetaBernoulliModel.beta_mean(
        ua_result.models[-1].alphas, ua_result.models[-1].betas)

    print 'true pfc'
    print estimated_pfc

    def phi(rv):
        return rv.features

    kernel = kernels.SquaredExponentialKernel(sigma=config['kernel_sigma'],
                                              l=config['kernel_l'],
                                              phi=phi)

    print 'kernel matrix'
    print kernel.matrix(candidates)

    if vis:
        plt.show()
Example #6
0
def label_correlated(obj, chunk, dest, config, plot=False, load=True):
    """Label an object with grasps according to probability of force closure,
    using correlated bandits."""
    bandit_start = time.clock()

    np.random.seed(100)
    chunk = db.Chunk(config)

    if not load:
        # load grasps from database
        sample_start = time.clock()

        if config['grasp_sampler'] == 'antipodal':
            logging.info('Using antipodal grasp sampling')
            sampler = ags.AntipodalGraspSampler(config)
            grasps = sampler.generate_grasps(
                obj, check_collisions=config['check_collisions'], vis=plot)

            # pad with gaussian grasps
            num_grasps = len(grasps)
            min_num_grasps = config['min_num_grasps']
            if num_grasps < min_num_grasps:
                target_num_grasps = min_num_grasps - num_grasps
                gaussian_sampler = gs.GaussianGraspSampler(config)
                gaussian_grasps = gaussian_sampler.generate_grasps(
                    obj,
                    target_num_grasps=target_num_grasps,
                    check_collisions=config['check_collisions'],
                    vis=plot)
                grasps.extend(gaussian_grasps)
        else:
            logging.info('Using Gaussian grasp sampling')
            sampler = gs.GaussianGraspSampler(config)
            grasps = sampler.generate_grasps(
                obj,
                check_collisions=config['check_collisions'],
                vis=plot,
                grasp_gen_mult=6)
        sample_end = time.clock()
        sample_duration = sample_end - sample_start
        logging.info('Loaded %d grasps' % (len(grasps)))
        logging.info('Grasp candidate loading took %f sec' % (sample_duration))

        if not grasps:
            logging.info('Skipping %s' % (obj.key))
            return None

    else:
        grasps = load_grasps(obj, dest)
        grasps = grasps[:20]


#        grasps = chunk.load_grasps(obj.key)

# load features for all grasps
    feature_start = time.clock()
    feature_extractor = ff.GraspableFeatureExtractor(obj, config)

    features = feature_extractor.compute_all_features(grasps)
    """
    if not load:
        features = feature_extractor.compute_all_features(grasps)
    else:
        feature_loader = ff.GraspableFeatureLoader(obj, chunk.name, config)
        features = feature_loader.load_all_features(grasps) # in same order as grasps
    """
    feature_end = time.clock()
    feature_duration = feature_end - feature_start
    logging.info('Loaded %d features' % (len(features)))
    logging.info('Grasp feature loading took %f sec' % (feature_duration))

    # prune crappy grasps
    all_features = []
    all_grasps = []
    for grasp, feature in zip(grasps, features):
        if feature is not None:
            all_grasps.append(grasp)
            all_features.append(feature)
    grasps = all_grasps

    # compute distances for debugging
    distances = np.zeros([len(grasps), len(grasps)])
    i = 0
    for feature_i in all_features:
        j = 0
        for feature_j in all_features:
            distances[i, j] = np.linalg.norm(feature_i.phi - feature_j.phi)
            j += 1
        i += 1

    # bandit params
    brute_force_iter = config['bandit_brute_force_iter']
    max_iter = config['bandit_max_iter']
    confidence = config['bandit_confidence']
    snapshot_rate = config['bandit_snapshot_rate']
    tc_list = [
        tc.MaxIterTerminationCondition(max_iter),
    ]

    # run bandits!
    graspable_rv = pfc.GraspableObjectGaussianPose(obj, config)
    f_rv = scipy.stats.norm(config['friction_coef'],
                            config['sigma_mu'])  # friction Gaussian RV

    candidates = []
    for grasp, features in zip(grasps, all_features):
        logging.info('Adding grasp %d' % len(candidates))
        grasp_rv = pfc.ParallelJawGraspGaussian(grasp, config)
        pfc_rv = pfc.ForceClosureRV(grasp_rv, graspable_rv, f_rv, config)
        if features is None:
            logging.info('Could not compute features for grasp.')
        else:
            pfc_rv.set_features(features)
            candidates.append(pfc_rv)

    # feature transform
    def phi(rv):
        return rv.features

    nn = kernels.KDTree(phi=phi)
    kernel = kernels.SquaredExponentialKernel(sigma=config['kernel_sigma'],
                                              l=config['kernel_l'],
                                              phi=phi)
    objective = objectives.RandomBinaryObjective()

    if not load:
        # uniform allocation for true values
        ua = das.UniformAllocationMean(objective, candidates)
        logging.info('Running uniform allocation for true pfc.')
        ua_result = ua.solve(
            termination_condition=tc.MaxIterTerminationCondition(
                brute_force_iter),
            snapshot_rate=snapshot_rate)
        estimated_pfc = models.BetaBernoulliModel.beta_mean(
            ua_result.models[-1].alphas, ua_result.models[-1].betas)

        save_grasps(grasps, estimated_pfc, obj, dest)

        # plot params
        line_width = config['line_width']
        font_size = config['font_size']
        dpi = config['dpi']

        # plot histograms
        num_bins = 100
        bin_edges = np.linspace(0, 1, num_bins + 1)
        plt.figure()
        n, bins, patches = plt.hist(estimated_pfc, bin_edges)
        plt.xlabel('Probability of Success', fontsize=font_size)
        plt.ylabel('Num Grasps', fontsize=font_size)
        plt.title('Histogram of Grasps by Probability of Success',
                  fontsize=font_size)
        plt.show()

        exit(0)
    else:
        estimated_pfc = np.array([g.quality for g in grasps])

    # debugging for examining bad features
    bad_i = 0
    bad_j = 1
    grasp_i = grasps[bad_i]
    grasp_j = grasps[bad_j]
    pfc_i = estimated_pfc[bad_i]
    pfc_j = estimated_pfc[bad_j]
    features_i = all_features[bad_i]
    features_j = all_features[bad_j]
    feature_sq_diff = (features_i.phi - features_j.phi)**2
    #    grasp_i.close_fingers(obj, vis=True)
    #    grasp_j.close_fingers(obj, vis=True)

    grasp_i.surface_information(obj, config['window_width'],
                                config['window_steps'])
    grasp_j.surface_information(obj, config['window_width'],
                                config['window_steps'])

    w = config['window_steps']
    wi1 = np.reshape(features_i.extractors_[0].extractors_[1].phi, [w, w])
    wi2 = np.reshape(features_i.extractors_[1].extractors_[1].phi, [w, w])
    wj1 = np.reshape(features_j.extractors_[0].extractors_[1].phi, [w, w])
    wj2 = np.reshape(features_j.extractors_[1].extractors_[1].phi, [w, w])

    a = 0.1
    plt.figure()
    plt.subplot(2, 2, 1)
    plt.imshow(wi1, cmap=plt.cm.Greys, interpolation='none')
    plt.colorbar()
    plt.clim(-a, a)  # fixing color range for visual comparisons
    plt.title('wi1')

    plt.subplot(2, 2, 2)
    plt.imshow(wi2, cmap=plt.cm.Greys, interpolation='none')
    plt.colorbar()
    plt.clim(-a, a)  # fixing color range for visual comparisons
    plt.title('wi2')

    plt.subplot(2, 2, 3)
    plt.imshow(wj1, cmap=plt.cm.Greys, interpolation='none')
    plt.colorbar()
    plt.clim(-a, a)  # fixing color range for visual comparisons
    plt.title('wj1')

    plt.subplot(2, 2, 4)
    plt.imshow(wj2, cmap=plt.cm.Greys, interpolation='none')
    plt.colorbar()
    plt.clim(-a, a)  # fixing color range for visual comparisons
    plt.title('wj2')

    #    plt.show()
    #    IPython.embed()

    num_trials = config['num_trials']
    ts_rewards = []
    ts_corr_rewards = []

    for t in range(num_trials):
        logging.info('Trial %d' % (t))

        # Thompson sampling
        ts = das.ThompsonSampling(objective, candidates)
        logging.info('Running Thompson sampling.')
        ts_result = ts.solve(
            termination_condition=tc.OrTerminationCondition(tc_list),
            snapshot_rate=snapshot_rate)

        # correlated Thompson sampling for even faster convergence
        ts_corr = das.CorrelatedThompsonSampling(
            objective,
            candidates,
            nn,
            kernel,
            tolerance=config['kernel_tolerance'])
        logging.info('Running correlated Thompson sampling.')
        ts_corr_result = ts_corr.solve(
            termination_condition=tc.OrTerminationCondition(tc_list),
            snapshot_rate=snapshot_rate)

        ts_normalized_reward = reward_vs_iters(ts_result, estimated_pfc)
        ts_corr_normalized_reward = reward_vs_iters(ts_corr_result,
                                                    estimated_pfc)

        ts_rewards.append(ts_normalized_reward)
        ts_corr_rewards.append(ts_corr_normalized_reward)

    # get the bandit rewards
    all_ts_rewards = np.array(ts_rewards)
    all_ts_corr_rewards = np.array(ts_corr_rewards)
    avg_ts_rewards = np.mean(all_ts_rewards, axis=0)
    avg_ts_corr_rewards = np.mean(all_ts_corr_rewards, axis=0)

    # get correlations and plot
    k = kernel.matrix(candidates)
    k_vec = k.ravel()
    pfc_arr = np.array([estimated_pfc]).T
    pfc_diff = ssd.squareform(ssd.pdist(pfc_arr))
    pfc_vec = pfc_diff.ravel()

    bad_ind = np.where(pfc_diff > 1.0 - k)

    plt.figure()
    plt.scatter(k_vec, pfc_vec)
    plt.xlabel('Kernel', fontsize=15)
    plt.ylabel('PFC Diff', fontsize=15)
    plt.title('Correlations', fontsize=15)
    #    plt.show()

    #    IPython.embed()

    # plot params
    line_width = config['line_width']
    font_size = config['font_size']
    dpi = config['dpi']

    # plot histograms
    num_bins = 100
    bin_edges = np.linspace(0, 1, num_bins + 1)
    plt.figure()
    n, bins, patches = plt.hist(estimated_pfc, bin_edges)
    plt.xlabel('Probability of Success', fontsize=font_size)
    plt.ylabel('Num Grasps', fontsize=font_size)
    plt.title('Histogram of Grasps by Probability of Success',
              fontsize=font_size)

    # plot the results
    plt.figure()
    plt.plot(ts_result.iters,
             avg_ts_rewards,
             c=u'g',
             linewidth=line_width,
             label='Thompson Sampling (Uncorrelated)')
    plt.plot(ts_corr_result.iters,
             avg_ts_corr_rewards,
             c=u'r',
             linewidth=line_width,
             label='Thompson Sampling (Correlated)')

    plt.xlim(0, np.max(ts_result.iters))
    plt.ylim(0.5, 1)
    plt.xlabel('Iteration', fontsize=font_size)
    plt.ylabel('Normalized Probability of Force Closure', fontsize=font_size)
    plt.title('Avg Normalized PFC vs Iteration', fontsize=font_size)

    handles, labels = plt.gca().get_legend_handles_labels()
    plt.legend(handles, labels, loc='lower right')
    plt.show()

    IPython.embed()
    """
    # aggregate grasps
    object_grasps = [candidates[i].grasp for i in ts_result.best_candidates]
    grasp_qualities = list(ts_result.best_pred_means)

    bandit_stop = time.clock()
    logging.info('Bandits took %f sec' %(bandit_stop - bandit_start))

    # get rotated, translated versions of grasps
    delay = 0
    pr2_grasps = []
    pr2_grasp_qualities = []
    theta_res = config['grasp_theta_res'] * np.pi
#    grasp_checker = pgc.OpenRaveGraspChecker(view=config['vis_grasps'])

    if config['vis_grasps']:
        delay = config['vis_delay']

    for grasp, grasp_quality in zip(object_grasps, grasp_qualities):
        rotated_grasps = grasp.transform(obj.tf, theta_res)
#        rotated_grasps = grasp_checker.prune_grasps_in_collision(obj, rotated_grasps, auto_step=True, close_fingers=False, delay=delay)
        pr2_grasps.extend(rotated_grasps)
        pr2_grasp_qualities.extend([grasp_quality] * len(rotated_grasps))

    logging.info('Num grasps: %d' %(len(pr2_grasps)))

    grasp_filename = os.path.join(dest, obj.key + '.json')
    with open(grasp_filename, 'w') as f:
        jsons.dump([g.to_json(quality=q) for g, q in
                   zip(pr2_grasps, pr2_grasp_qualities)], f)

    ua_normalized_reward = reward_vs_iters(ua_result, estimated_pfc)
    ts_normalized_reward = reward_vs_iters(ts_result, estimated_pfc)
    ts_corr_normalized_reward = reward_vs_iters(ts_corr_result, estimated_pfc)

    return BanditCorrelatedExperimentResult(ua_normalized_reward, ts_normalized_reward, ts_corr_normalized_reward,
                                            ua_result, ts_result, ts_corr_result, obj_key=obj.key)
                                            """
    return None
Example #7
0
def label_correlated(obj, chunk, dest, config, plot=False):
    """Label an object with grasps according to probability of force closure,
    using correlated bandits."""
    bandit_start = time.clock()

    np.random.seed(100)

    # load grasps from database
    sample_start = time.clock()
    grasps = chunk.load_grasps(obj.key)
    sample_end = time.clock()
    sample_duration = sample_end - sample_start
    logging.info('Loaded %d grasps' % (len(grasps)))
    logging.info('Grasp candidate loading took %f sec' % (sample_duration))

    if not grasps:
        logging.info('Skipping %s' % (obj.key))
        return None

    # load features for all grasps
    feature_start = time.clock()
    feature_loader = ff.GraspableFeatureLoader(obj, chunk.name, config)
    all_features = feature_loader.load_all_features(
        grasps)  # in same order as grasps
    feature_end = time.clock()
    feature_duration = feature_end - feature_start
    logging.info('Loaded %d features' % (len(all_features)))
    logging.info('Grasp feature loading took %f sec' % (feature_duration))

    # bandit params
    brute_force_iter = config['bandit_brute_force_iter']
    max_iter = config['bandit_max_iter']
    confidence = config['bandit_confidence']
    snapshot_rate = config['bandit_snapshot_rate']
    tc_list = [
        tc.MaxIterTerminationCondition(max_iter),
        #        tc.ConfidenceTerminationCondition(confidence)
    ]

    # run bandits!
    graspable_rv = pfc.GraspableObjectGaussianPose(obj, config)
    f_rv = scipy.stats.norm(config['friction_coef'],
                            config['sigma_mu'])  # friction Gaussian RV

    candidates = []
    for grasp, features in zip(grasps, all_features):
        logging.info('Adding grasp %d' % len(candidates))
        grasp_rv = pfc.ParallelJawGraspGaussian(grasp, config)
        pfc_rv = pfc.ForceClosureRV(grasp_rv, graspable_rv, f_rv, config)
        if features is None:
            logging.info('Could not compute features for grasp.')
        else:
            pfc_rv.set_features(features)
            candidates.append(pfc_rv)

    # feature transform
    def phi(rv):
        return rv.features

    nn = kernels.KDTree(phi=phi)
    kernel = kernels.SquaredExponentialKernel(sigma=config['kernel_sigma'],
                                              l=config['kernel_l'],
                                              phi=phi)

    if config['grasp_symmetry']:

        def swapped_phi(rv):
            return rv.swapped_features

        nn = kernels.SymmetricKDTree(phi=phi, alternate_phi=swapped_phi)
        kernel = kernels.SymmetricSquaredExponentialKernel(
            sigma=config['kernel_sigma'],
            l=config['kernel_l'],
            phi=phi,
            alternate_phi=swapped_phi)
    objective = objectives.RandomBinaryObjective()

    # pre-computed pfc values
    estimated_pfc = np.array([c.grasp.quality for c in candidates])

    # uniform allocation baseline
    ua = das.UniformAllocationMean(objective, candidates)
    logging.info('Running uniform allocation.')
    ua_result = ua.solve(
        termination_condition=tc.OrTerminationCondition(tc_list),
        snapshot_rate=snapshot_rate)

    # Thompson sampling for faster convergence
    ts = das.ThompsonSampling(objective, candidates)
    logging.info('Running Thompson sampling.')
    ts_result = ts.solve(
        termination_condition=tc.OrTerminationCondition(tc_list),
        snapshot_rate=snapshot_rate)

    # correlated Thompson sampling for even faster convergence
    ts_corr = das.CorrelatedThompsonSampling(
        objective,
        candidates,
        nn,
        kernel,
        tolerance=config['kernel_tolerance'])
    logging.info('Running correlated Thompson sampling.')
    ts_corr_result = ts_corr.solve(
        termination_condition=tc.OrTerminationCondition(tc_list),
        snapshot_rate=snapshot_rate)

    object_grasps = [candidates[i].grasp for i in ts_result.best_candidates]
    grasp_qualities = list(ts_result.best_pred_means)

    bandit_stop = time.clock()
    logging.info('Bandits took %f sec' % (bandit_stop - bandit_start))

    # get rotated, translated versions of grasps
    delay = 0
    pr2_grasps = []
    pr2_grasp_qualities = []
    theta_res = config['grasp_theta_res'] * np.pi
    #    grasp_checker = pgc.OpenRaveGraspChecker(view=config['vis_grasps'])

    if config['vis_grasps']:
        delay = config['vis_delay']

    for grasp, grasp_quality in zip(object_grasps, grasp_qualities):
        rotated_grasps = grasp.transform(obj.tf, theta_res)
        #        rotated_grasps = grasp_checker.prune_grasps_in_collision(obj, rotated_grasps, auto_step=True, close_fingers=False, delay=delay)
        pr2_grasps.extend(rotated_grasps)
        pr2_grasp_qualities.extend([grasp_quality] * len(rotated_grasps))

    logging.info('Num grasps: %d' % (len(pr2_grasps)))

    grasp_filename = os.path.join(dest, obj.key + '.json')
    with open(grasp_filename, 'w') as f:
        jsons.dump([
            g.to_json(quality=q)
            for g, q in zip(pr2_grasps, pr2_grasp_qualities)
        ], f)

    ua_normalized_reward = reward_vs_iters(ua_result, estimated_pfc)
    ts_normalized_reward = reward_vs_iters(ts_result, estimated_pfc)
    ts_corr_normalized_reward = reward_vs_iters(ts_corr_result, estimated_pfc)

    return BanditCorrelatedExperimentResult(ua_normalized_reward,
                                            ts_normalized_reward,
                                            ts_corr_normalized_reward,
                                            estimated_pfc,
                                            ua_result.iters,
                                            kernel.matrix(candidates),
                                            obj_key=obj.key)
Example #8
0
def extract_features(obj, dest, feature_dest, config):
    # sample grasps
    sample_start = time.clock()
    if config['grasp_sampler'] == 'antipodal':
        logging.info('Using antipodal grasp sampling')
        sampler = ags.AntipodalGraspSampler(config)
        grasps = sampler.generate_grasps(
            obj, check_collisions=config['check_collisions'])

        # pad with gaussian grasps
        num_grasps = len(grasps)
        min_num_grasps = config['min_num_grasps']
        if num_grasps < min_num_grasps:
            target_num_grasps = min_num_grasps - num_grasps
            gaussian_sampler = gs.GaussianGraspSampler(config)
            gaussian_grasps = gaussian_sampler.generate_grasps(
                obj,
                target_num_grasps=target_num_grasps,
                check_collisions=config['check_collisions'])
            grasps.extend(gaussian_grasps)
    else:
        logging.info('Using Gaussian grasp sampling')
        sampler = gs.GaussianGraspSampler(config)
        grasps = sampler.generate_grasps(
            obj, check_collisions=config['check_collisions'])

    sample_end = time.clock()
    sample_duration = sample_end - sample_start
    logging.info('Grasp candidate generation took %f sec' % (sample_duration))

    if not grasps or len(grasps) == 0:
        logging.info('Skipping %s' % (obj.key))
        return

    # compute all features
    feature_start = time.clock()
    feature_extractor = ff.GraspableFeatureExtractor(obj, config)
    all_features = feature_extractor.compute_all_features(grasps)
    feature_end = time.clock()
    feature_duration = feature_end - feature_start
    logging.info('Feature extraction took %f sec' % (feature_duration))

    # generate pfc candidates
    graspable_rv = pfc.GraspableObjectGaussianPose(obj, config)
    f_rv = scipy.stats.norm(config['friction_coef'], config['sigma_mu'])
    candidates = []
    logging.info('%d grasps, %d valid features', len(grasps),
                 len(all_features) - all_features.count(None))
    for grasp, features in zip(grasps, all_features):
        logging.info('Adding grasp %d candidate' % (len(candidates)))
        if features is None:
            logging.info('No features computed.')
            continue
        grasp_rv = pfc.ParallelJawGraspGaussian(grasp, config)
        pfc_rv = pfc.ForceClosureRV(grasp_rv, graspable_rv, f_rv, config)
        pfc_rv.set_features(features)
        candidates.append(pfc_rv)
    logging.info('%d candidates', len(candidates))

    # brute force with uniform allocation
    brute_force_iter = config['bandit_brute_force_iter']
    snapshot_rate = config['bandit_snapshot_rate']

    def phi(rv):
        return rv.features

    objective = objectives.RandomBinaryObjective()

    ua = das.UniformAllocationMean(objective, candidates)
    logging.info('Running uniform allocation for true pfc.')
    bandit_start = time.clock()
    ua_result = ua.solve(
        termination_condition=tc.MaxIterTerminationCondition(brute_force_iter),
        snapshot_rate=snapshot_rate)
    bandit_end = time.clock()
    bandit_duration = bandit_end - bandit_start
    logging.info('Uniform allocation (%d iters) took %f sec' %
                 (brute_force_iter, bandit_duration))

    cand_grasps = [c.grasp for c in candidates]
    cand_features = [c.features_ for c in candidates]
    final_model = ua_result.models[-1]
    estimated_pfc = models.BetaBernoulliModel.beta_mean(
        final_model.alphas, final_model.betas)

    if len(cand_grasps) != len(estimated_pfc):
        logging.warning(
            'Number of grasps does not match estimated pfc results.')
        IPython.embed()

    # write to file
    grasp_filename = os.path.join(dest, obj.key + '.json')
    with open(grasp_filename, 'w') as grasp_file:
        jsons.dump([
            g.to_json(quality=q, num_successes=a, num_failures=b)
            for g, q, a, b in zip(cand_grasps, estimated_pfc,
                                  final_model.alphas, final_model.betas)
        ], grasp_file)

    # HACK to make paths relative
    features_as_json = [f.to_json(feature_dest) for f in cand_features]
    output_dest = os.path.split(dest)[0]
    for feature_as_json in features_as_json:
        feature_as_json = list(feature_as_json.values())[0]
        for wname in ('w1', 'w2'):
            wdata = feature_as_json[wname]
            for k, v in wdata.items():
                wdata[k] = os.path.relpath(
                    v, output_dest)  # relative to output_dest
    feature_filename = os.path.join(feature_dest, obj.key + '.json')
    with open(feature_filename, 'w') as feature_file:
        jsons.dump(features_as_json, feature_file)
Example #9
0
def label_pfc(obj, dataset, output_dir, config):
    """ Label an object with grasps according to probability of force closure """
    # sample intial antipodal grasps
    start = time.clock()
    sampler = ags.AntipodalGraspSampler(config)

    start_time = time.clock()
    grasps, alpha_thresh, rho_thresh = sampler.generate_grasps(obj, vis=False)
    end_time = time.clock()
    duration = end_time - start_time
    logging.info('Antipodal grasp candidate generation took %f sec' %
                 (duration))

    # partition grasps
    grasp_partitions = pfc.space_partition_grasps(grasps, config)

    # bandit params
    max_iter = config['bandit_max_iter']
    confidence = config['bandit_confidence']
    snapshot_rate = config['bandit_snapshot_rate']
    tc_list = [
        tc.MaxIterTerminationCondition(max_iter),
        tc.ConfidenceTerminationCondition(confidence)
    ]

    # run bandits on each partition
    object_grasps = []
    grasp_qualities = []
    i = 0
    for grasp_partition in grasp_partitions:
        logging.info('Finding highest quality grasp in partition %d' % (i))
        # create random variables
        graspable_rv = pfc.GraspableObjectGaussianPose(obj, config)
        f_rv = scipy.stats.norm(
            config['friction_coef'],
            config['sigma_mu'])  # friction gaussian random variable
        candidates = []

        for grasp in grasp_partition:
            grasp_rv = pfc.ParallelJawGraspGaussian(grasp, config)
            candidates.append(
                pfc.ForceClosureRV(grasp_rv, graspable_rv, f_rv, config))

        # run bandits
        objective = objectives.RandomBinaryObjective()
        ts = das.ThompsonSampling(objective, candidates)
        ts_result = ts.solve(
            termination_condition=tc.OrTerminationCondition(tc_list),
            snapshot_rate=snapshot_rate)
        object_grasps.extend([c.grasp for c in ts_result.best_candidates])
        grasp_qualities.extend(list(ts_result.best_pred_means))
        i = i + 1

    stop = time.clock()
    logging.info('Took %d sec' % (stop - start))

    # get rotated, translated versions of grasps
    delay = 0
    pr2_grasps = []
    pr2_grasp_qualities = []
    theta_res = config['grasp_theta_res'] * np.pi
    grasp_checker = pgc.OpenRaveGraspChecker(view=config['vis_grasps'])
    i = 0
    if config['vis_grasps']:
        delay = config['vis_delay']

    for grasp in object_grasps:
        print 'Grasp', i
        rotated_grasps = grasp.transform(obj.tf, theta_res)
        rotated_grasps = grasp_checker.prune_grasps_in_collision(
            obj,
            rotated_grasps,
            auto_step=True,
            close_fingers=False,
            delay=delay)
        pr2_grasps.extend(rotated_grasps)
        pr2_grasp_qualities.extend([grasp_qualities[i]] * len(rotated_grasps))
        i = i + 1

    logging.info('Num grasps: %d' % (len(pr2_grasps)))

    # save grasps locally :( Due to problems with sudo
    grasp_filename = os.path.join(output_dir, obj.key + '.json')
    with open(grasp_filename, 'w') as f:
        jsons.dump([
            pr2_grasps[i].to_json(quality=pr2_grasp_qualities[i])
            for i in range(len(pr2_grasps))
        ], f)