Example #1
0
def test_gaussian_noise():
    np.random.seed(2012)
    for shape in [10, 10], [100, 1000], [500, 50]:
        val = np.random.normal(0, 10)
        x = np.full(shape, val)
        noisy = gaussian_noise(x, np.ones(shape[1]))
        assert (np.mean(noisy) - np.mean(x))**2 < 1.0
        assert (np.std(noisy) - 1.0)**2 < 0.1
        noisy = gaussian_noise(x, np.full(shape[1], 10.0))
        assert (np.std(noisy) - 10.0)**2 < 0.1
Example #2
0
    def initialize(self, initial_position):
        # Prior sampling function for each of the state variables
        # Centered around initial position estimate
        self.prior_fn = independent_sample([
            norm(loc=initial_position[0], scale=2).rvs,
            norm(loc=initial_position[1], scale=2).rvs,
            uniform(loc=initial_position[2], scale=np.pi / 2).rvs
        ])

        self.pf_lock.acquire()

        self.pf = ParticleFilter(
            n_particles=self.n,
            prior_fn=self.prior_fn,
            observe_fn=self.observation_function,
            weight_fn=self.weight_function,
            dynamics_fn=self.dynamics_function,
            noise_fn=lambda x: gaussian_noise(x, sigmas=[0.08, 0.08, 0.08]))

        self.pf.update()
        rospy.loginfo("Finished initial pf update")

        self.pf_lock.release()
        rospy.loginfo("Released initial lock")
Example #3
0
                        [0, 0, 0, 0, 1., 0], [0, 0, 0, 0, 0, 1.]]).T)
    return xp


def rbf_error(x, y, sigma=1):
    # RBF kernel
    d = np.sum((x - y)**2, axis=1)
    return np.exp(-d / (2.0 * sigma**2))


pf = ParticleFilter(
    prior_fn=prior_fn,
    observe_fn=ob_fn,
    n_particles=500,
    dynamics_fn=process_fn,
    noise_fn=lambda x: gaussian_noise(x, sigmas=[5, 5, 5, 0.05, 0.05, 0.1]),
    weight_fn=lambda x, y: rbf_error(x, y, sigma=2),
    resample_proportion=0.7,
    column_names=columns,
)

pf.init_filter()

# ------------- Running Particle filter with animation -------------
#

# class UpdateParticle(object):
#     def __init__(self, ax, preds, labels):
#         self.nppreds = preds
#         self.nplabel = labels
#         self.ax = ax
Example #4
0
    def _pfilter_init(self):
        """
        Setup the particle filter.

        """

        # initialisation of particle filter implementation
        # refer https://github.com/johnhw/pfilter/blob/master/README.md

        columns = ["x", "y", "heading", "life_span"]
        map_x_size = self.carpet_map.grid.shape[1] * self.carpet_map.cell_size
        map_y_size = self.carpet_map.grid.shape[0] * self.carpet_map.cell_size

        def prior_fn(n_particles: int):
            """
            Sample n random particles from p(x|z)
            i.e. if last color is BEIGE, return a sample
            where proportion self._weight_fn_p of particles lie on
            random beige cells, and proportion (1-self._weight_fn_p)
            lie on other cells
            """
            # create a grid of sample probablilities, equal in shape
            # to the map grid, such that the sum of all cells
            # which match the most recent color equals self._weight_fn_p
            # and the sum of all cells = 1.
            p_mat = np.zeros_like(self.carpet_map.grid, dtype=float)

            if self._most_recent_color is None:
                matching = np.zeros_like(self.carpet_map.grid)
            else:
                matching = self.carpet_map.grid == self._most_recent_color.index

            num_matches = np.sum(matching)
            if num_matches == 0 or num_matches == self.carpet_map.grid.size:
                p_mat[:] = 1 / self.carpet_map.grid.size
            else:
                p_mat[matching] = self._weight_fn_p / np.sum(matching)
                p_mat[~matching] = (1 - self._weight_fn_p) / np.sum(~matching)

            # sample from the grid using the probabilities from above
            p_mat_flat = p_mat.flatten()
            selected_grid_linear_indices = np.random.choice(range(
                len(p_mat_flat)),
                                                            size=n_particles,
                                                            p=p_mat_flat)
            #convert linear indices back to grid indices
            y_indices, x_indices = np.unravel_index(
                selected_grid_linear_indices, self.carpet_map.grid.shape)

            # convert sampled grid indices into x/y coordinates
            # add noise to sample uniformly across selected grid cells
            x_coords = (x_indices +
                        uniform().rvs(n_particles)) * self.carpet_map.cell_size
            y_coords = (self.carpet_map.grid.shape[0] -
                        (y_indices + uniform().rvs(n_particles))
                        ) * self.carpet_map.cell_size

            heading = uniform(loc=0, scale=2 * np.pi).rvs(n_particles)
            age = np.zeros_like(heading, dtype=float)

            return np.column_stack([x_coords, y_coords, heading, age])

        def observe_fn(state: np.array, **kwargs) -> np.array:
            return self.carpet_map.get_color_at_coords(state[:, 0:3])

        def weight_fn(hyp_observed: np.array, real_observed: np.array,
                      **kwargs):
            """
            weight p for correct observations, 1-p for incorrect
            """
            p = self._weight_fn_p

            correct_observation = np.squeeze(hyp_observed) == np.squeeze(
                real_observed)

            weights = correct_observation * p + ~correct_observation * (1 - p)
            return weights

        def odom_update(x: np.array, odom: np.array) -> np.array:
            poses = add_poses(x[:, 0:3], np.array([odom]))
            life_span = x[:, 3]
            life_span += 1
            return np.column_stack((poses, life_span))

        self._pfilter = ParticleFilter(
            prior_fn=prior_fn,
            observe_fn=observe_fn,
            n_particles=self._n_particles,
            dynamics_fn=odom_update,
            noise_fn=lambda x, odom: gaussian_noise(
                x,
                sigmas=[
                    self._odom_pos_noise, self._odom_pos_noise, self.
                    _odom_heading_noise, 0
                ]),
            weight_fn=weight_fn,
            resample_proportion=self._resample_proportion,
            column_names=columns)