Example #1
0
 def make_dqn_agent(self, env, q_func, opt, explorer, rbuf, gpu):
     return DQN(
         q_func,
         opt,
         rbuf,
         gpu=gpu,
         gamma=0.9,
         explorer=explorer,
         replay_start_size=100,
         target_update_interval=100,
     )
Example #2
0
def _objective_core(
    # optuna parameters
    trial,
    # training parameters
    env_id,
    outdir,
    seed,
    monitor,
    gpu,
    steps,
    train_max_episode_len,
    eval_n_episodes,
    eval_interval,
    batch_size,
    # hyperparameters
    hyperparams,
):
    # Set a random seed used in PFRL
    utils.set_random_seed(seed)

    # Set different random seeds for train and test envs.
    train_seed = seed
    test_seed = 2**31 - 1 - seed

    def make_env(test=False):
        env = gym.make(env_id)

        if not isinstance(env.observation_space, gym.spaces.Box):
            raise ValueError(
                "Supported only Box observation environments, but given: {}".format(
                    env.observation_space
                )
            )
        if len(env.observation_space.shape) != 1:
            raise ValueError(
                "Supported only observation spaces with ndim==1, but given: {}".format(
                    env.observation_space.shape
                )
            )
        if not isinstance(env.action_space, gym.spaces.Discrete):
            raise ValueError(
                "Supported only discrete action environments, but given: {}".format(
                    env.action_space
                )
            )

        env_seed = test_seed if test else train_seed
        env.seed(env_seed)
        # Cast observations to float32 because our model uses float32
        env = pfrl.wrappers.CastObservationToFloat32(env)
        if monitor:
            env = pfrl.wrappers.Monitor(env, outdir)
        if not test:
            # Scale rewards (and thus returns) to a reasonable range so that
            # training is easier
            env = pfrl.wrappers.ScaleReward(env, hyperparams["reward_scale_factor"])
        return env

    env = make_env(test=False)
    obs_space = env.observation_space
    obs_size = obs_space.low.size
    action_space = env.action_space
    n_actions = action_space.n

    # create model & q_function
    model = MLP(
        in_size=obs_size, out_size=n_actions, hidden_sizes=hyperparams["hidden_sizes"]
    )
    q_func = q_functions.SingleModelStateQFunctionWithDiscreteAction(model=model)

    # Use epsilon-greedy for exploration
    start_epsilon = 1
    explorer = explorers.LinearDecayEpsilonGreedy(
        start_epsilon=start_epsilon,
        end_epsilon=hyperparams["end_epsilon"],
        decay_steps=hyperparams["decay_steps"],
        random_action_func=action_space.sample,
    )

    opt = optim.Adam(
        q_func.parameters(), lr=hyperparams["lr"], eps=hyperparams["adam_eps"]
    )

    rbuf_capacity = steps
    rbuf = replay_buffers.ReplayBuffer(rbuf_capacity)

    agent = DQN(
        q_func,
        opt,
        rbuf,
        gpu=gpu,
        gamma=hyperparams["gamma"],
        explorer=explorer,
        replay_start_size=hyperparams["replay_start_size"],
        target_update_interval=hyperparams["target_update_interval"],
        update_interval=hyperparams["update_interval"],
        minibatch_size=batch_size,
    )

    eval_env = make_env(test=True)

    evaluation_hooks = [OptunaPrunerHook(trial=trial)]
    _, eval_stats_history = experiments.train_agent_with_evaluation(
        agent=agent,
        env=env,
        steps=steps,
        eval_n_steps=None,
        eval_n_episodes=eval_n_episodes,
        eval_interval=eval_interval,
        outdir=outdir,
        eval_env=eval_env,
        train_max_episode_len=train_max_episode_len,
        evaluation_hooks=evaluation_hooks,
    )

    score = _get_score_from_eval_stats_history(eval_stats_history)

    return score
Example #3
0
def main():
    import logging

    logging.basicConfig(level=logging.INFO)

    parser = argparse.ArgumentParser()
    parser.add_argument(
        "--outdir",
        type=str,
        default="results",
        help=("Directory path to save output files."
              " If it does not exist, it will be created."),
    )
    parser.add_argument("--env", type=str, default="Pendulum-v0")
    parser.add_argument("--seed",
                        type=int,
                        default=0,
                        help="Random seed [0, 2 ** 32)")
    parser.add_argument("--gpu", type=int, default=0)
    parser.add_argument("--final-exploration-steps", type=int, default=10**4)
    parser.add_argument("--start-epsilon", type=float, default=1.0)
    parser.add_argument("--end-epsilon", type=float, default=0.1)
    parser.add_argument("--noisy-net-sigma", type=float, default=None)
    parser.add_argument("--demo", action="store_true", default=False)
    parser.add_argument("--load", type=str, default=None)
    parser.add_argument("--steps", type=int, default=10**5)
    parser.add_argument("--prioritized-replay", action="store_true")
    parser.add_argument("--replay-start-size", type=int, default=1000)
    parser.add_argument("--target-update-interval", type=int, default=10**2)
    parser.add_argument("--target-update-method", type=str, default="hard")
    parser.add_argument("--soft-update-tau", type=float, default=1e-2)
    parser.add_argument("--update-interval", type=int, default=1)
    parser.add_argument("--eval-n-runs", type=int, default=100)
    parser.add_argument("--eval-interval", type=int, default=10**4)
    parser.add_argument("--n-hidden-channels", type=int, default=100)
    parser.add_argument("--n-hidden-layers", type=int, default=2)
    parser.add_argument("--gamma", type=float, default=0.99)
    parser.add_argument("--minibatch-size", type=int, default=None)
    parser.add_argument("--render-train", action="store_true")
    parser.add_argument("--render-eval", action="store_true")
    parser.add_argument("--monitor", action="store_true")
    parser.add_argument("--reward-scale-factor", type=float, default=1e-3)
    parser.add_argument(
        "--actor-learner",
        action="store_true",
        help="Enable asynchronous sampling with asynchronous actor(s)",
    )  # NOQA
    parser.add_argument(
        "--num-envs",
        type=int,
        default=1,
        help=("The number of environments for sampling (only effective with"
              " --actor-learner enabled)"),
    )  # NOQA
    args = parser.parse_args()

    # Set a random seed used in PFRL
    utils.set_random_seed(args.seed)

    args.outdir = experiments.prepare_output_dir(args,
                                                 args.outdir,
                                                 argv=sys.argv)
    print("Output files are saved in {}".format(args.outdir))

    # Set different random seeds for different subprocesses.
    # If seed=0 and processes=4, subprocess seeds are [0, 1, 2, 3].
    # If seed=1 and processes=4, subprocess seeds are [4, 5, 6, 7].
    process_seeds = np.arange(args.num_envs) + args.seed * args.num_envs
    assert process_seeds.max() < 2**32

    def clip_action_filter(a):
        return np.clip(a, action_space.low, action_space.high)

    def make_env(idx=0, test=False):
        env = gym.make(args.env)
        # Use different random seeds for train and test envs
        process_seed = int(process_seeds[idx])
        env_seed = 2**32 - 1 - process_seed if test else process_seed
        utils.set_random_seed(env_seed)
        # Cast observations to float32 because our model uses float32
        env = pfrl.wrappers.CastObservationToFloat32(env)
        if args.monitor:
            env = pfrl.wrappers.Monitor(env, args.outdir)
        if isinstance(env.action_space, spaces.Box):
            utils.env_modifiers.make_action_filtered(env, clip_action_filter)
        if not test:
            # Scale rewards (and thus returns) to a reasonable range so that
            # training is easier
            env = pfrl.wrappers.ScaleReward(env, args.reward_scale_factor)
        if (args.render_eval and test) or (args.render_train and not test):
            env = pfrl.wrappers.Render(env)
        return env

    env = make_env(test=False)
    timestep_limit = env.spec.max_episode_steps
    obs_space = env.observation_space
    obs_size = obs_space.low.size
    action_space = env.action_space

    if isinstance(action_space, spaces.Box):
        action_size = action_space.low.size
        # Use NAF to apply DQN to continuous action spaces
        q_func = q_functions.FCQuadraticStateQFunction(
            obs_size,
            action_size,
            n_hidden_channels=args.n_hidden_channels,
            n_hidden_layers=args.n_hidden_layers,
            action_space=action_space,
        )
        # Use the Ornstein-Uhlenbeck process for exploration
        ou_sigma = (action_space.high - action_space.low) * 0.2
        explorer = explorers.AdditiveOU(sigma=ou_sigma)
    else:
        n_actions = action_space.n
        q_func = q_functions.FCStateQFunctionWithDiscreteAction(
            obs_size,
            n_actions,
            n_hidden_channels=args.n_hidden_channels,
            n_hidden_layers=args.n_hidden_layers,
        )
        # Use epsilon-greedy for exploration
        explorer = explorers.LinearDecayEpsilonGreedy(
            args.start_epsilon,
            args.end_epsilon,
            args.final_exploration_steps,
            action_space.sample,
        )

    if args.noisy_net_sigma is not None:
        pnn.to_factorized_noisy(q_func, sigma_scale=args.noisy_net_sigma)
        # Turn off explorer
        explorer = explorers.Greedy()

    opt = optim.Adam(q_func.parameters())

    rbuf_capacity = 5 * 10**5
    if args.minibatch_size is None:
        args.minibatch_size = 32
    if args.prioritized_replay:
        betasteps = (args.steps -
                     args.replay_start_size) // args.update_interval
        rbuf = replay_buffers.PrioritizedReplayBuffer(rbuf_capacity,
                                                      betasteps=betasteps)
    else:
        rbuf = replay_buffers.ReplayBuffer(rbuf_capacity)

    agent = DQN(
        q_func,
        opt,
        rbuf,
        gpu=args.gpu,
        gamma=args.gamma,
        explorer=explorer,
        replay_start_size=args.replay_start_size,
        target_update_interval=args.target_update_interval,
        update_interval=args.update_interval,
        minibatch_size=args.minibatch_size,
        target_update_method=args.target_update_method,
        soft_update_tau=args.soft_update_tau,
    )

    if args.load:
        agent.load(args.load)

    eval_env = make_env(test=True)

    if args.demo:
        eval_stats = experiments.eval_performance(
            env=eval_env,
            agent=agent,
            n_steps=None,
            n_episodes=args.eval_n_runs,
            max_episode_len=timestep_limit,
        )
        print("n_runs: {} mean: {} median: {} stdev {}".format(
            args.eval_n_runs,
            eval_stats["mean"],
            eval_stats["median"],
            eval_stats["stdev"],
        ))

    elif not args.actor_learner:

        print(
            "WARNING: Since https://github.com/pfnet/pfrl/pull/112 we have started"
            " setting `eval_during_episode=True` in this script, which affects the"
            " timings of evaluation phases.")

        experiments.train_agent_with_evaluation(
            agent=agent,
            env=env,
            steps=args.steps,
            eval_n_steps=None,
            eval_n_episodes=args.eval_n_runs,
            eval_interval=args.eval_interval,
            outdir=args.outdir,
            eval_env=eval_env,
            train_max_episode_len=timestep_limit,
            eval_during_episode=True,
        )
    else:
        # using impala mode when given num of envs

        # When we use multiple envs, it is critical to ensure each env
        # can occupy a CPU core to get the best performance.
        # Therefore, we need to prevent potential CPU over-provision caused by
        # multi-threading in Openmp and Numpy.
        # Disable the multi-threading on Openmp and Numpy.
        os.environ["OMP_NUM_THREADS"] = "1"  # NOQA

        (
            make_actor,
            learner,
            poller,
            exception_event,
        ) = agent.setup_actor_learner_training(args.num_envs)

        poller.start()
        learner.start()

        experiments.train_agent_async(
            processes=args.num_envs,
            make_agent=make_actor,
            make_env=make_env,
            steps=args.steps,
            eval_n_steps=None,
            eval_n_episodes=args.eval_n_runs,
            eval_interval=args.eval_interval,
            outdir=args.outdir,
            stop_event=learner.stop_event,
            exception_event=exception_event,
        )

        poller.stop()
        learner.stop()
        poller.join()
        learner.join()
Example #4
0
def main():

    parser = argparse.ArgumentParser()
    parser.add_argument(
        "--outdir",
        type=str,
        default="results",
        help=(
            "Directory path to save output files."
            " If it does not exist, it will be created."
        ),
    )
    parser.add_argument(
        "--env",
        type=str,
        default="'DClawTurnFixed-v0'",
        help="OpenAI Gym MuJoCo env to perform algorithm on.",
    )
    parser.add_argument("--seed", type=int, default=0, help="Random seed [0, 2 ** 32)")
    parser.add_argument(
        "--gpu", type=int, default=-1, help="GPU to use, set to -1 if no GPU."
    )
    parser.add_argument(
        "--load", type=str, default="", help="Directory to load agent from."
    )
    parser.add_argument(
        "--max-steps",
        type=int,
        default=10 ** 6,
        help="Total number of timesteps to train the agent.",
    )
    parser.add_argument(
        "--eval-n-runs",
        type=int,
        default=10,
        help="Number of episodes run for each evaluation.",
    )
    parser.add_argument(
        "--eval-interval",
        type=int,
        default=5000,
        help="Interval in timesteps between evaluations.",
    )
    parser.add_argument(
        "--replay-start-size",
        type=int,
        default=10000,
        help="Minimum replay buffer size before " + "performing gradient updates.",
    )
    parser.add_argument("--batch-size", type=int, default=64, help="Minibatch size")
    parser.add_argument(
        "--render", action="store_true", help="Render env states in a GUI window."
    )
    parser.add_argument(
        "--demo", action="store_true", help="Just run evaluation, not training."
    )
    parser.add_argument("--load-pretrained", action="store_true", default=False)
    parser.add_argument(
        "--pretrained-type", type=str, default="best", choices=["best", "final"]
    )
    parser.add_argument(
        "--monitor", action="store_true", help="Wrap env with gym.wrappers.Monitor."
    )
    parser.add_argument(
        "--log-level", type=int, default=logging.INFO, help="Level of the root logger."
    )
    parser.add_argument("--gamma", type=float, default=0.9)
    parser.add_argument("--ddpg-training-steps", type=int, default=int(1e3))
    parser.add_argument("--adversary-training-steps", type=int,default=int(1e3))
    args = parser.parse_args()

    logging.basicConfig(level=args.log_level)

    args.outdir = './results'
    print("Output files are saved in {}".format(args.outdir))

    # Set a random seed used in PFRL
    utils.set_random_seed(args.seed)

    def make_env(test):
        env = gym.make('DClawTurnFixed-v0')
        # Unwrap TimeLimit wrapper
        assert isinstance(env, gym.wrappers.TimeLimit)
        env = env.env
        # Use different random seeds for train and test envs
        env_seed = 2 ** 32 - 1 - args.seed if test else args.seed
        env.seed(env_seed)
        # Cast observations to float32 because our model uses float32
        env = pfrl.wrappers.CastObservationToFloat32(env)
        if args.monitor:
            env = pfrl.wrappers.Monitor(env, args.outdir)
        if args.render and not test:
            env = pfrl.wrappers.Render(env)
        return env

    env = make_env(test=False)
    timestep_limit = env.spec.max_episode_steps
    obs_space = env.observation_space
    action_space = env.action_space
    print("Observation space:", obs_space)
    print("Action space:", action_space)

    obs_size = obs_space.low.size
    action_size = action_space.low.size

    q_func = nn.Sequential(
        ConcatObsAndAction(),
        nn.Linear(obs_size + action_size, 256),
        nn.ReLU(),
        nn.Linear(256, 256),
        nn.ReLU(),
        nn.Linear(256,256),
        nn.ReLU(),
        nn.Linear(256, 1),
    )
    policy = nn.Sequential(
        nn.Linear(obs_size, 256),
        nn.ReLU(),
        nn.Linear(256, 256),
        nn.ReLU(),
        nn.Linear(256,256),
        nn.ReLU(),
        nn.Linear(256, action_size),
        BoundByTanh(low=action_space.low, high=action_space.high),
        DeterministicHead(),
    )

    ddpg_opt_a = torch.optim.Adam(policy.parameters())
    ddpg_opt_c = torch.optim.Adam(q_func.parameters())

    ddpg_rbuf = replay_buffers.ReplayBuffer(10 ** 6)

    ddpg_explorer = explorers.AdditiveGaussian(
        scale=0.1, low=action_space.low, high=action_space.high
    )

    def ddpg_burnin_action_func():
        """Select random actions until model is updated one or more times."""
        return np.random.uniform(action_space.low, action_space.high).astype(np.float32)

    # Hyperparameters in http://arxiv.org/abs/1802.09477
    ddpg_agent = DDPG(
        policy,
        q_func,
        ddpg_opt_a,
        ddpg_opt_c,
        ddpg_rbuf,
        gamma=args.gamma,
        explorer=ddpg_explorer,
        replay_start_size=args.replay_start_size,
        target_update_method="soft",
        target_update_interval=1,
        update_interval=1,
        soft_update_tau=5e-3,
        n_times_update=1,
        gpu=args.gpu,
        minibatch_size=args.batch_size,
        burnin_action_func=ddpg_burnin_action_func,
    )
    def adversary_random_func():
        return np.random.randint(0,9)
    # adversary_q = Critic(obs_size, 1, hidden_size=adversary_hidden_size)
    # adversary_action_space = gym.spaces.discrete.Discrete(9)
    # adversary_q = q_functions.FCQuadraticStateQFunction(
    #     obs_size, 1, n_hidden_channels = 256, n_hidden_layers = 2,action_space = adversary_action_space
    # )
    adversary_q = nn.Sequential(
        nn.Linear(obs_size, 256),
        nn.Linear(256,256),
        nn.Linear(256,256),
        nn.Linear(256,1),
        DiscreteActionValueHead(),
    )
    adversary_optimizer = torch.optim.Adam(adversary_q.parameters(), lr=1e-3)
    adversary_rbuf_capacity = int(1e6)
    adversary_rbuf = replay_buffers.ReplayBuffer(adversary_rbuf_capacity)
    adversary_explorer = explorers.LinearDecayEpsilonGreedy(
        1.0, 0.1, 10**4, adversary_random_func
    )

    adversary_agent = DQN(
        adversary_q,
        adversary_optimizer,
        adversary_rbuf,
        gpu=args.gpu,
        gamma=args.gamma,
        explorer=adversary_explorer,
        replay_start_size=args.replay_start_size,
        target_update_interval=1,
        minibatch_size=args.batch_size,
        target_update_method='soft',
        soft_update_tau=5e-3

    )
    logger = logging.getLogger(__name__)
    eval_env = make_env(test=True)
    evaluator = Evaluator(
        agent=ddpg_agent,
        n_steps=None,
        n_episodes=args.eval_n_runs,
        eval_interval=args.eval_interval,
        outdir=args.outdir,
        max_episode_len=timestep_limit,
        env=eval_env,
        step_offset=0,
        save_best_so_far_agent=True,
        use_tensorboard=True,
        logger=logger,
    )

    episode_reward = 0
    ddpg_episode_idx = 0
    adversary_episode_idx = 0

    # o_0, r_0
    current_state = env.reset()

    t = 0 
    ddpg_t = 0
    adversary_t = 0
    episode_len = 0
    try:
        while t < args.max_steps:
            for i in range(args.ddpg_training_steps):
                t += 1
                ddpg_t += 1
                ddpg_action = ddpg_agent.act(current_state)
                adversary_action = adversary_agent.act(current_state)
                ddpg_action[adversary_action] = 0
                next_state, reward, done, info = env.step(ddpg_action)
                episode_reward += reward
                episode_len += 1
                reset = episode_len == timestep_limit or info.get("needs_reset", False)
                ddpg_agent.observe(next_state, reward, done, reset)
                current_state = next_state
                if done or reset or t == args.max_steps:
                    logger.info(
                        "ddpg phase: outdir:%s step:%s episode:%s R:%s",
                        args.outdir,
                        ddpg_t,
                        ddpg_episode_idx,
                        episode_reward,
                    )
                    logger.info("statistics:%s", ddpg_agent.get_statistics())
                    if evaluator is not None:
                        evaluator.evaluate_if_necessary(t=t, episodes=ddpg_episode_idx + 1)
                    if t == args.max_steps:
                        break
                    episode_reward = 0
                    ddpg_episode_idx += 1
                    episode_len = 0
                    current_state = env.reset()
            episode_reward = 0
            episode_len = 0
            current_state = env.reset()
            print("start adversary training ")
            for i in range(args.adversary_training_steps):
                t += 1
                adversary_t += 1
                ddpg_action = ddpg_agent.act(current_state)
                adversary_action = adversary_agent.act(current_state)
                ddpg_action[adversary_action] = 0
                next_state, reward, done, info = env.step(ddpg_action)
                reward = -reward
                episode_len += 1
                reset = episode_len == timestep_limit or info.get("needs_reset", False)
                adversary_agent.observe(next_state, reward, done, reset)
                current_state = next_state

                if done or reset or t == args.max_steps:
                    if t == args.max_steps:
                        break
                    episode_reward = 0
                    adversary_episode_idx += 1
                    episode_len = 0
                    current_state = env.reset()
            

    except (Exception, KeyboardInterrupt):
        # Save the current model before being killed
        save_agent(ddpg_agent, t, args.outdir, logger, suffix="_ddpg_except")
        save_agent(adversary_agent, t, args.outdir, logger, suffix="_adversary_except" )
        raise

    # Save the final model
    save_agent(ddpg_agent, t, args.outdir, logger, suffix="_ddpg_finish")
    save_agent(adversary_agent, t, args.outdir, logger, suffix="_adversary_finish" )
    # if args.demo:
    #     eval_env.render()
    #     eval_stats = experiments.eval_performance(
    #         env=eval_env,
    #         agent=ddpg_agent,
    #         n_steps=None,
    #         n_episodes=args.eval_n_runbase_envs,
    #         max_episode_len=timestep_limit,
    #     )
    #     print(
    #         "n_runs: {} mean: {} median: {} stdev {}".format(
    #             args.eval_n_runs,
    #             eval_stats["mean"],
    #             eval_stats["median"],
    #             eval_stats["stdev"],
    #         )
    #     )
    # else:
    #     experiments.train_agent_with_evaluation(
    #         agent=ddpg_agent,
    #         env=env,
    #         steps=args.steps,
    #         eval_env=eval_env,
    #         eval_n_steps=None,
    #         eval_n_episodes=args.eval_n_runs,
    #         eval_interval=args.eval_interval,
    #         outdir=args.outdir,
    #         train_max_episode_len=timestep_limit,
    #     )
    print("finish")