Example #1
0
def find_lat_long(current_zip):
    #find_lat_long takes a zipcode as a parameter and uses pgeocode to
    #find the latitude and longitude of the zipcode
    #as well as make a reference to the name of the location

    geolocator = Nominatim('us')
    lat = geolocator.query_postal_code(current_zip)[-3]
    long = geolocator.query_postal_code(current_zip)[-2]
    current_data = check_db(current_zip)

    plot_lat_long(lat, long, current_data['City'])
Example #2
0
 def __init__(self, partition_size, storage_dir, country='US'):
     """requires separate inputs for each country"""
     self.partition_size = partition_size
     self.storage_dir = storage_dir
     logging.info('Storage at %s.' % (storage_dir))
     self.df = pd.DataFrame()
     if country in list(pgeocode_country_codes):
         self.country_code = pgeocode_country_codes[country]
     elif country.upper() in list(pgeocode_country_codes.values()):
         self.country_code = country
     logging.info('initializing with country_code %s.' % self.country_code)
     self.geolocator = Nominatim(self.country_code)
Example #3
0
def zip_to_coords(local_zip_code, local_country='us'):
    # This is very slow and should only be called when necessary
    print("Retrieving location data...")
    local_nomi = Nominatim(local_country)
    local_location_details = local_nomi.query_postal_code(local_zip_code)
    print("IDENTIFIED: {}, {} - located at ({}, {}) in {}.".format(
        local_location_details[2], local_location_details[4], local_location_details[9],
        local_location_details[10], local_location_details[1]))
    # These should always work presuming the index for the pandas.core.series.Series object type isn't changed
    local_latitude = local_location_details[9]
    local_longitude = local_location_details[10]
    local_coords = [local_latitude, local_longitude]
    return local_coords
def get_hourly_forecasts(country_code, zip_code, unit):
    """
    Fetches hourly forecast information from the Weather.gov API, for a given country and zip code.

    Params:
        country_code (str) the requested country, like "US"
        zip_code (str) the requested postal code, like "20057"

    Example:
        result = get_hourly_forecasts(country_code="US", zip_code="20057")

    Returns the forecast info "hourly_forecasts" along with more information about the requested geography ("city_name").
    """
    geocoder = Geocoder(country_code)
    geo = geocoder.query_postal_code(zip_code)
    # using a null-checking method from pandas because geo is a pandas Series:
    if isnull(geo.latitude) or isnull(geo.longitude) or isnull(
            geo.place_name) or isnull(geo.state_code):
        return None

    # unfortunately the weather.gov api makes us do two requests or use a more sophisticated caching strategy (see api docs)
    request_url = f"https://api.weather.gov/points/{geo.latitude},{geo.longitude}"
    response = requests.get(request_url)
    if response.status_code != 200:
        return None
    parsed_response = json.loads(response.text)

    forecast_url = parsed_response["properties"]["forecastHourly"]
    forecast_response = requests.get(forecast_url)
    if forecast_response.status_code != 200:
        return None
    parsed_forecast_response = json.loads(forecast_response.text)

    # consider returning the raw geo and parsed_forecast_response objects,
    # ... and using a different method to parse them further!
    # ... but we're doing that here for now as well:
    city_name = f"{geo.place_name}, {geo.state_code}"  #> Washington, DC
    hourly_forecasts = []
    for period in parsed_forecast_response["properties"]["periods"][0:24]:
        hourly_forecasts.append({
            "timestamp":
            format_hour(period["startTime"]),
            "temp":
            format_temp(period["temperature"], period["temperatureUnit"],
                        unit),
            "conditions":
            period["shortForecast"],
            "image_url":
            period["icon"]
        })
    return {"city_name": city_name, "hourly_forecasts": hourly_forecasts}
Example #5
0
def test_nominatim_query_postal_code():
    nomi = Nominatim("fr")

    res = nomi.query_postal_code(["91120"])
    assert isinstance(res, pd.DataFrame)
    assert res.shape[0] == 1
    assert res.place_name.values[0] == "Palaiseau"

    res = nomi.query_postal_code("91120")
    assert isinstance(res, pd.Series)
    assert res.place_name == "Palaiseau"

    res = nomi.query_postal_code(["33625", "31000", "99999"])
    assert res.shape[0] == 3
    assert not np.isfinite(res.iloc[2].latitude)
Example #6
0
def test_nominatim_query_postal_code():
    nomi = Nominatim('fr')

    res = nomi.query_postal_code(['91120'])
    assert isinstance(res, pd.DataFrame)
    assert res.shape[0] == 1
    assert res.place_name.values[0] == 'Palaiseau'

    res = nomi.query_postal_code('91120')
    assert isinstance(res, pd.Series)
    assert res.place_name == 'Palaiseau'

    res = nomi.query_postal_code(['33625', '31000', '99999'])
    assert res.shape[0] == 3
    assert not np.isfinite(res.iloc[2].latitude)
Example #7
0
def test_countries(country, pc1, location1, pc2, location2, distance12):
    nomi = Nominatim(country)

    res = nomi.query_postal_code(pc1)
    assert isinstance(res, pd.Series)
    assert _normalize_str(location1) in _normalize_str(res.place_name)

    res = nomi.query_postal_code(pc2)
    assert isinstance(res, pd.Series)
    assert _normalize_str(location2) in _normalize_str(res.place_name)

    gdist = GeoDistance(country)
    dist = gdist.query_postal_code(pc1, pc2)
    assert isinstance(dist, float)
    assert dist == pytest.approx(distance12, abs=5)
Example #8
0
def test_download_dataset(temp_dir):
    assert not os.path.exists(os.path.join(temp_dir, "FR.txt"))
    nomi = Nominatim("fr")
    # the data file was downloaded
    assert os.path.exists(os.path.join(temp_dir, "FR.txt"))
    res = nomi.query_postal_code("77160")

    nomi2 = Nominatim("fr")
    res2 = nomi.query_postal_code("77160")

    assert_array_equal(nomi._data.columns, nomi2._data.columns)
    assert_array_equal(nomi._data_frame.columns, nomi2._data_frame.columns)
    assert nomi._data.shape == nomi._data.shape
    assert nomi._data_frame.shape == nomi._data_frame.shape

    assert len(res.place_name.split(",")) > 1
    assert len(res2.place_name.split(",")) > 1
Example #9
0
def test_download_dataset(temp_dir):
    assert not os.path.exists(os.path.join(temp_dir, 'FR.txt'))
    nomi = Nominatim('fr')
    # the data file was downloaded
    assert os.path.exists(os.path.join(temp_dir, 'FR.txt'))
    res = nomi.query_postal_code('77160')

    nomi2 = Nominatim('fr')
    res2 = nomi.query_postal_code('77160')

    assert_array_equal(nomi._data.columns, nomi2._data.columns)
    assert_array_equal(nomi._data_unique.columns, nomi2._data_unique.columns)
    assert nomi._data.shape == nomi._data.shape
    assert nomi._data_unique.shape == nomi._data_unique.shape

    assert len(res.place_name.split(',')) > 1
    assert len(res2.place_name.split(',')) > 1
Example #10
0
def test_nominatim_query_postal_code_multiple():
    nomi = Nominatim("de", unique=False)
    expected_places = [
        "Wellen",
        "Groß Rodensleben",
        "Irxleben",
        "Eichenbarleben",
        "Klein Rodensleben",
        "Niederndodeleben",
        "Hohendodeleben",
        "Ochtmersleben",
    ]

    res = nomi.query_postal_code("39167")
    assert isinstance(res, pd.DataFrame)
    assert res.shape[0] == len(expected_places)
    for place in res.place_name.values:
        assert place in expected_places
Example #11
0
def test_nominatim_query_postal_code_multiple():
    nomi = Nominatim('de', unique=False)
    expected_places = [
        'Wellen',
        'Groß Rodensleben',
        'Irxleben',
        'Eichenbarleben',
        'Klein Rodensleben',
        'Niederndodeleben',
        'Hohendodeleben',
        'Ochtmersleben',
    ]

    res = nomi.query_postal_code('39167')
    assert isinstance(res, pd.DataFrame)
    assert res.shape[0] == len(expected_places)
    for place in res.place_name.values:
        assert place in expected_places
Example #12
0
def test_countries(country, pc1, location1, pc2, location2, distance12):
    if country == "IE":
        pytest.xfail("TODO: Investigate failure for IE")
    nomi = Nominatim(country)

    res = nomi.query_postal_code(pc1)
    assert isinstance(res, pd.Series)
    assert _normalize_str(location1) in _normalize_str(res.place_name)

    assert "country_code" in res.index

    res = nomi.query_postal_code(pc2)
    assert isinstance(res, pd.Series)
    assert _normalize_str(location2) in _normalize_str(res.place_name)

    gdist = GeoDistance(country)
    dist = gdist.query_postal_code(pc1, pc2)
    assert isinstance(dist, float)
    assert dist == pytest.approx(distance12, abs=5)
Example #13
0
class PgeocodeWrapper:
    def __init__(self, partition_size, storage_dir, country='US'):
        """requires separate inputs for each country"""
        self.partition_size = partition_size
        self.storage_dir = storage_dir
        logging.info('Storage at %s.' % (storage_dir))
        self.df = pd.DataFrame()
        if country in list(pgeocode_country_codes):
            self.country_code = pgeocode_country_codes[country]
        elif country.upper() in list(pgeocode_country_codes.values()):
            self.country_code = country
        logging.info('initializing with country_code %s.' % self.country_code)
        self.geolocator = Nominatim(self.country_code)

    def geocode(self, x):
        """takes zipcode"""
        locations = self.geolocator.query_postal_code(x)
        return locations.latitude, locations.longitude

    def manage_partitioning(self, partition_number):
        start = self.start_i
        end = start + self.partition_size
        partition = self.df[start:end].copy()

        _zips = partition.zipcode.tolist()
        latitudes, longitudes = self.geocode(_zips)

        partition['latitude'] = latitudes.tolist()
        partition['longitude'] = longitudes.tolist()
        filename = '%s_part_%s.csv' % (self.country_code, partition_number)
        filepath = os.path.join(self.storage_dir, filename)
        partition.to_csv(filepath, index=False)
        self.start_i += self.partition_size
        return list(latitudes), list(longitudes)

    def run(self):
        if self.df.empty:
            pass
        self.start_i = 0
        n_partitions = int(np.ceil(len(self.df)/self.partition_size))
        latitudes, longitudes = [], []

        try:
            for i in range(n_partitions):
                lats, lons = self.manage_partitioning(i)
                latitudes += lats
                longitudes += lons

            self.df['latitude'] = latitudes
            self.df['longitude'] = longitudes
        except Exception as e:
            logging.error('Partition failed. Error: %s' % e)
            traceback.print_exc() # for initial dev TODO: create debug mode
Example #14
0
def test_nominatim_all_countries(country):
    nomi = Nominatim(country)
    res = nomi.query_postal_code("00000")
    assert isinstance(res, pd.Series)