Example #1
0
def detector_response_dCS(frequencies,
                          chirpm,
                          symmratio,
                          spin1,
                          spin2,
                          Luminosity_Distance,
                          theta,
                          phi,
                          iota,
                          alpha_squared,
                          bppe,
                          NSflag,
                          cosmology=cosmology.Planck15):
    mass1 = utilities.calculate_mass1(chirpm, symmratio)
    mass2 = utilities.calculate_mass2(chirpm, symmratio)
    template = dcsimr_detector_frame(mass1=mass1,
                                     mass2=mass2,
                                     spin1=spin1,
                                     spin2=spin2,
                                     collision_time=0,
                                     collision_phase=0,
                                     Luminosity_Distance=Luminosity_Distance,
                                     phase_mod=alpha_squared,
                                     cosmo_model=cosmology,
                                     NSflag=NSflag)
    frequencies = np.asarray(frequencies)
    amp, phase, hreal = template.calculate_waveform_vector(frequencies)
    h_complex = amp * (np.exp(-1j * phase))

    Fplus = (1 / 2) * (1 + np.cos(theta)**2) * np.cos(2 * phi)
    Fcross = np.cos(theta) * np.sin(2 * phi)
    Q = (1 + np.cos(iota)**2) / 2 * Fplus + 1j * Fcross * np.cos(iota)
    template_detector_response = h_complex * Q
    return template_detector_response
Example #2
0
def log_likelihood_detector_frame_SNR(Data,
                                      frequencies,
                                      noise,
                                      SNR,
                                      t_c,
                                      phi_c,
                                      chirpm,
                                      symmratio,
                                      spin1,
                                      spin2,
                                      alpha_squared,
                                      bppe,
                                      NSflag,
                                      detector,
                                      cosmology=cosmology.Planck15):
    mass1 = utilities.calculate_mass1(chirpm, symmratio)
    mass2 = utilities.calculate_mass2(chirpm, symmratio)
    DL = 100 * mpc
    model = dcsimr_detector_frame(mass1=mass1,
                                  mass2=mass2,
                                  spin1=spin1,
                                  spin2=spin2,
                                  collision_time=t_c,
                                  collision_phase=phi_c,
                                  Luminosity_Distance=DL,
                                  phase_mod=alpha_squared,
                                  cosmo_model=cosmology,
                                  NSflag=NSflag)
    #model = imrdf(mass1=mass1,mass2=mass2, spin1=spin1,spin2=spin2, collision_time=t_c,collision_phase=phi_c,
    #                Luminosity_Distance=DL, cosmo_model=cosmology,NSflag=NSflag)
    frequencies = np.asarray(frequencies)
    model.fix_snr_series(snr_target=SNR,
                         detector=detector,
                         frequencies=frequencies)

    amp, phase, hreal = model.calculate_waveform_vector(frequencies)
    #h_complex = np.multiply(amp,np.add(np.cos(phase),-1j*np.sin(phase)))
    h_complex = amp * np.exp(-1j * phase)
    #noise_temp,noise_func, freq = model.populate_noise(detector=detector,int_scheme='quad')
    resid = np.subtract(Data, h_complex)
    #integrand_numerator = np.multiply(np.conjugate(Data), h_complex) + np.multiply(Data,np.conjugate( h_complex))
    integrand_numerator = np.multiply(resid, np.conjugate(resid))

    #noise_root =noise_func(frequencies)
    #noise = np.multiply(noise_root, noise_root)
    integrand = np.divide(integrand_numerator, noise)
    integral = np.real(simps(integrand, frequencies))
    #integral = np.real(np.sum(integrand))
    return -2 * integral
Example #3
0
def log_likelihood_Full(Data,
                        frequencies,
                        A0,
                        t_c,
                        phi_c,
                        chirpm,
                        symmratio,
                        chi_s,
                        chi_a,
                        beta,
                        bppe,
                        NSflag,
                        N_detectors,
                        detector,
                        cosmology=cosmology.Planck15):
    DL = ((np.pi / 30)**(1 / 2) / A0) * chirpm**2 * (np.pi * chirpm)**(-7 / 6)
    Z = Distance(DL / mpc, unit=u.Mpc).compute_z(cosmology=cosmology)
    chirpme = chirpm / (1 + Z)
    mass1 = utilities.calculate_mass1(chirpme, symmratio)
    mass2 = utilities.calculate_mass2(chirpme, symmratio)
    chi1 = chi_s + chi_a
    chi2 = chi_s - chi_a
    model = modimrins(mass1=mass1,
                      mass2=mass2,
                      spin1=chi1,
                      spin2=chi2,
                      collision_time=t_c,
                      collision_phase=phi_c,
                      Luminosity_Distance=DL,
                      phase_mod=beta,
                      bppe=bppe,
                      cosmo_model=cosmology,
                      NSflag=NSflag,
                      N_detectors=N_detectors)
    frequencies = np.asarray(frequencies)
    amp, phase, hreal = model.calculate_waveform_vector(frequencies)
    h_complex = np.multiply(amp, np.add(np.cos(phase), 1j * np.sin(phase)))
    noise_temp, noise_func, freq = model.populate_noise(detector=detector,
                                                        int_scheme='quad')
    resid = np.subtract(Data, h_complex)
    #integrand_numerator = np.multiply(np.conjugate(Data), h_complex) + np.multiply(Data,np.conjugate( h_complex))
    integrand_numerator = np.multiply(resid, np.conjugate(resid))

    noise_root = noise_func(frequencies)
    noise = np.multiply(noise_root, noise_root)
    integrand = np.divide(integrand_numerator, noise)
    integral = np.real(simps(integrand, frequencies))
    return -2 * integral
Example #4
0
def log_likelihood(Data,
                   frequencies,
                   DL,
                   t_c,
                   phi_c,
                   chirpm,
                   symmratio,
                   spin1,
                   spin2,
                   alpha_squared,
                   bppe,
                   NSflag,
                   N_detectors,
                   detector,
                   cosmology=cosmology.Planck15):
    #Z = Distance(DL/mpc,unit=u.Mpc).compute_z(cosmology = cosmology)
    #chirpme = chirpm/(1+Z)
    mass1 = utilities.calculate_mass1(chirpm, symmratio)
    mass2 = utilities.calculate_mass2(chirpm, symmratio)
    model = dcsimr_detector_frame(mass1=mass1,
                                  mass2=mass2,
                                  spin1=spin1,
                                  spin2=spin2,
                                  collision_time=t_c,
                                  collision_phase=phi_c,
                                  Luminosity_Distance=DL,
                                  phase_mod=alpha_squared,
                                  cosmo_model=cosmology,
                                  NSflag=NSflag,
                                  N_detectors=N_detectors)
    frequencies = np.asarray(frequencies)
    amp, phase, hreal = model.calculate_waveform_vector(frequencies)
    #h_complex = np.multiply(amp,np.add(np.cos(phase),-1j*np.sin(phase)))
    h_complex = amp * np.exp(-1j * phase)
    noise_temp, noise_func, freq = model.populate_noise(detector=detector,
                                                        int_scheme='quad')
    resid = np.subtract(Data, h_complex)
    #integrand_numerator = np.multiply(np.conjugate(Data), h_complex) + np.multiply(Data,np.conjugate( h_complex))
    integrand_numerator = np.multiply(resid, np.conjugate(resid))

    noise_root = noise_func(frequencies)
    noise = np.multiply(noise_root, noise_root)
    integrand = np.divide(integrand_numerator, noise)
    integral = np.real(simps(integrand, frequencies))
    return -2 * integral
Example #5
0
def log_likelihood_maximized_coal_ratio(Data,
                                        frequencies,
                                        noise,
                                        SNR,
                                        chirpm,
                                        symmratio,
                                        spin1,
                                        spin2,
                                        alpha_squared,
                                        bppe,
                                        NSflag,
                                        cosmology=cosmology.Planck15):
    deltaf = frequencies[1] - frequencies[0]
    #Construct template with random luminosity distance
    mass1 = utilities.calculate_mass1(chirpm, symmratio)
    mass2 = utilities.calculate_mass2(chirpm, symmratio)
    DL = 100 * mpc
    template = dcsimr_detector_frame(mass1=mass1,
                                     mass2=mass2,
                                     spin1=spin1,
                                     spin2=spin2,
                                     collision_time=0,
                                     collision_phase=0,
                                     Luminosity_Distance=DL,
                                     phase_mod=alpha_squared,
                                     cosmo_model=cosmology,
                                     NSflag=NSflag)

    #Construct preliminary waveform for template
    frequencies = np.asarray(frequencies)
    amp, phase, hreal = template.calculate_waveform_vector(frequencies)
    h_complex = amp * np.exp(-1j * phase)

    #construct noise model
    #noise_temp,noise_func, freq = template.populate_noise(detector=detector,int_scheme='quad')
    #noise_root =noise_func(frequencies)
    #noise = np.multiply(noise_root, noise_root)

    #Fix snr of template to match the data
    snr_template = np.sqrt(4 * simps(amp * amp / noise, frequencies).real)
    h_complex = SNR / snr_template * h_complex

    #Construct the inverse fourier transform of the inner product (D|h)
    g_tilde = 4 * np.divide(np.multiply(np.conjugate(Data), h_complex), noise)
    g = np.fft.ifft(g_tilde)

    #Maximize over tc and phic
    gmag = np.abs(g)
    #maxg = np.amax( gmag ).real*len(frequencies)
    maxg = np.amax(gmag).real * (deltaf * len(frequencies))

    #Construct the SNR in the Riemann sum approximation - Noramlization factors were combined
    #with the normalization factors for the ifft
    #Note: tried to avoid this, but it seems mixing integration schemes causes issues
    #   ie, using simps and sum interchangeably doesn't work. Need to use sum to normalize ifft
    #snr1sum = np.sum((4*(Data*np.conjugate(Data))/noise).real)
    #snr1 = np.sqrt(snr1sum*(frequencies[-1]-frequencies[0])/len(frequencies))

    #Print out the maximal phi
    #maxgindex = np.argmax( gmag )
    #maxgcompl = g[maxgindex]
    #print(np.arctan((maxgcompl).imag/(maxgcompl).real))

    #Return the loglikelihood
    #return -SNR**2*(1-maxg/(snr1sum))
    return -(0.5 * SNR**2 - maxg)
Example #6
0
def log_likelihood_marginalized_coal(Data,
                                     frequencies,
                                     noise,
                                     SNR,
                                     chirpm,
                                     symmratio,
                                     spin1,
                                     spin2,
                                     alpha_squared,
                                     bppe,
                                     NSflag,
                                     cosmology=cosmology.Planck15):
    deltaf = frequencies[1] - frequencies[0]

    #Construct template with random luminosity distance
    mass1 = utilities.calculate_mass1(chirpm, symmratio)
    mass2 = utilities.calculate_mass2(chirpm, symmratio)
    DL = 100 * mpc
    template = dcsimr_detector_frame(mass1=mass1,
                                     mass2=mass2,
                                     spin1=spin1,
                                     spin2=spin2,
                                     collision_time=0,
                                     collision_phase=0,
                                     Luminosity_Distance=DL,
                                     phase_mod=alpha_squared,
                                     cosmo_model=cosmology,
                                     NSflag=NSflag)

    #Construct preliminary waveform for template
    frequencies = np.asarray(frequencies)
    amp, phase, hreal = template.calculate_waveform_vector(frequencies)
    h_complex = amp * np.exp(-1j * phase)

    #construct noise model
    #start=time()
    #noise_temp,noise_func, freq = template.populate_noise(detector=detector,int_scheme='quad')
    #noise_root =noise_func(frequencies)
    #noise = np.multiply(noise_root, noise_root)
    #print('noise time: ', time()-start)

    #Fix snr of template to match the data
    snr_template = np.sqrt(4 * simps(amp * amp / noise, frequencies).real)
    h_complex = SNR / snr_template * h_complex

    #Construct the inverse fourier transform of the inner product (D|h)
    #h_complex = np.insert(h_complex,0,np.conjugate(np.flip(h_complex)))
    #Data = np.insert(Data,0,np.conjugate(np.flip(Data)))
    #noise = np.insert(noise,0,np.conjugate(np.flip(noise)))
    #frequncies =np.insert(frequencies,0,-np.flip(frequencies))
    g_tilde = np.divide(np.multiply(np.conjugate(Data), h_complex), noise)
    g = np.abs(np.fft.fft(g_tilde)) * 4 * deltaf  #/len(frequencies)

    gmax = np.amax(g)
    sumg = np.sum(i0e(g) * np.exp(g - gmax)) * 1 / (len(frequencies) * deltaf)
    #print(sumg, gmax/SNR**2,np.log(sumg))
    if sumg != np.inf:
        return np.log(sumg) + gmax - SNR**2
    else:
        #print("inf")
        items = bi(g)
        sumg = np.sum(items) * 1 / (len(frequencies) * deltaf)
        return log(sumg) - SNR**2