def main(exp_config): logging.info( '**************************************************************') logging.info(' *** Running Experiment: %s', exp_config.experiment_name) logging.info( '**************************************************************') # Get Data data_loader = data_switch(exp_config.data_identifier) data = data_loader(exp_config) # Create Model phiseg = phiseg_model.phiseg(exp_config) # Fit model to data phiseg.train(data)
def main(model_path, exp_config): # Make and restore vagan model phiseg_model = phiseg(exp_config=exp_config) phiseg_model.load_weights(model_path, type=model_selection) data_loader = data_switch(exp_config.data_identifier) data = data_loader(exp_config) N = data.test.images.shape[0] n_images = 16 n_samples = 16 # indices = np.arange(N) # sample_inds = np.random.choice(indices, n_images) sample_inds = [165, 280, 213] # <-- prostate # sample_inds = [1551] #[907, 1296, 1551] # <-- LIDC for ii in sample_inds: print('------- Processing image %d -------' % ii) outfolder = os.path.join(model_path, 'samples_%s' % model_selection, str(ii)) utils.makefolder(outfolder) x_b = data.test.images[ii, ...].reshape([1] + list(exp_config.image_size)) s_b = data.test.labels[ii, ...] if np.sum(s_b) < 10: print('WARNING: skipping cases with no structures') continue s_b_r = utils.convert_batch_to_onehot(s_b.transpose((2, 0, 1)), exp_config.nlabels) print('Plotting input image') plt.figure() x_b_d = preproc_image(x_b) plt.imshow(x_b_d, cmap='gray') plt.axis('off') plt.savefig(os.path.join(outfolder, 'input_img_%d.png' % ii), bbox_inches='tight') print('Generating 100 samples') s_p_list = [] for kk in range(100): s_p_list.append( phiseg_model.predict_segmentation_sample(x_b, return_softmax=True)) s_p_arr = np.squeeze(np.asarray(s_p_list)) print('Plotting %d of those samples' % n_samples) for jj in range(n_samples): s_p_sm = s_p_arr[jj, ...] s_p_am = np.argmax(s_p_sm, axis=-1) plt.figure() s_p_d = preproc_image(s_p_am, nlabels=exp_config.nlabels) plt.imshow(s_p_d, cmap='gray') plt.axis('off') plt.savefig(os.path.join(outfolder, 'sample_img_%d_samp_%d.png' % (ii, jj)), bbox_inches='tight') print('Plotting ground-truths masks') for jj in range(s_b_r.shape[0]): s_b_sm = s_b_r[jj, ...] s_b_am = np.argmax(s_b_sm, axis=-1) plt.figure() s_p_d = preproc_image(s_b_am, nlabels=exp_config.nlabels) plt.imshow(s_p_d, cmap='gray') plt.axis('off') plt.savefig(os.path.join(outfolder, 'gt_img_%d_samp_%d.png' % (ii, jj)), bbox_inches='tight') print('Generating error masks') E_ss, E_sy_avg, E_yy_avg = generate_error_maps(s_p_arr, s_b_r) print('Plotting them') plt.figure() plt.imshow(preproc_image(E_ss)) plt.axis('off') plt.savefig(os.path.join(outfolder, 'E_ss_%d.png' % ii), bbox_inches='tight') print('Plotting them') plt.figure() plt.imshow(preproc_image(np.log(E_ss))) plt.axis('off') plt.savefig(os.path.join(outfolder, 'log_E_ss_%d.png' % ii), bbox_inches='tight') plt.figure() plt.imshow(preproc_image(E_sy_avg)) plt.axis('off') plt.savefig(os.path.join(outfolder, 'E_sy_avg_%d_.png' % ii), bbox_inches='tight') plt.figure() plt.imshow(preproc_image(E_yy_avg)) plt.axis('off') plt.savefig(os.path.join(outfolder, 'E_yy_avg_%d_.png' % ii), bbox_inches='tight') plt.close('all')
def main(model_path, exp_config): # Make and restore vagan model phiseg_model = phiseg(exp_config=exp_config) phiseg_model.load_weights(model_path, type='best_ged') data_loader = data_switch(exp_config.data_identifier) data = data_loader(exp_config) lat_lvls = exp_config.latent_levels # RANDOM IMAGE # x_b, s_b = data.test.next_batch(1) # FIXED IMAGE # Cardiac: 100 normal image # LIDC: 200 large lesion, 203, 1757 complicated lesion # Prostate: 165 nice slice, 170 is a challenging and interesting slice index = 165 # # if SAVE_GIF: outfolder_gif = os.path.join(model_path, 'model_samples_id%d_gif' % index) utils.makefolder(outfolder_gif) x_b = data.test.images[index, ...].reshape([1] + list(exp_config.image_size)) x_b_d = utils.convert_to_uint8(np.squeeze(x_b)) x_b_d = utils.resize_image(x_b_d, video_target_size) if exp_config.data_identifier == 'uzh_prostate': # rotate rows, cols = x_b_d.shape M = cv2.getRotationMatrix2D((cols / 2, rows / 2), 270, 1) x_b_d = cv2.warpAffine(x_b_d, M, (cols, rows)) if SAVE_VIDEO: fourcc = cv2.VideoWriter_fourcc(*'XVID') outfile = os.path.join(model_path, 'model_samples_id%d.avi' % index) out = cv2.VideoWriter(outfile, fourcc, 5.0, (2 * video_target_size[1], video_target_size[0])) samps = 20 for ii in range(samps): # fix all below current level (the correct implementation) feed_dict = {} feed_dict[phiseg_model.training_pl] = False feed_dict[phiseg_model.x_inp] = x_b s_p, s_p_list = phiseg_model.sess.run( [phiseg_model.s_out_eval, phiseg_model.s_out_eval_list], feed_dict=feed_dict) s_p = np.argmax(s_p, axis=-1) # s_p_d = utils.convert_to_uint8(np.squeeze(s_p)) s_p_d = np.squeeze(np.uint8((s_p / exp_config.nlabels) * 255)) s_p_d = utils.resize_image(s_p_d, video_target_size, interp=cv2.INTER_NEAREST) if exp_config.data_identifier == 'uzh_prostate': #rotate s_p_d = cv2.warpAffine(s_p_d, M, (cols, rows)) img = np.concatenate([x_b_d, s_p_d], axis=1) img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR) img = histogram_equalization(img) if exp_config.data_identifier == 'acdc': # labels (0 85 170 255) rv = cv2.inRange(s_p_d, 84, 86) my = cv2.inRange(s_p_d, 169, 171) rv_cnt, hierarchy = cv2.findContours(rv, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE) my_cnt, hierarchy = cv2.findContours(my, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE) cv2.drawContours(img, rv_cnt, -1, (0, 255, 0), 1) cv2.drawContours(img, my_cnt, -1, (0, 0, 255), 1) if exp_config.data_identifier == 'uzh_prostate': print(np.unique(s_p_d)) s1 = cv2.inRange(s_p_d, 84, 86) s2 = cv2.inRange(s_p_d, 169, 171) # s3 = cv2.inRange(s_p_d, 190, 192) s1_cnt, hierarchy = cv2.findContours(s1, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE) s2_cnt, hierarchy = cv2.findContours(s2, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE) # s3_cnt, hierarchy = cv2.findContours(s3, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE) cv2.drawContours(img, s1_cnt, -1, (0, 255, 0), 1) cv2.drawContours(img, s2_cnt, -1, (0, 0, 255), 1) # cv2.drawContours(img, s3_cnt, -1, (255, 0, 255), 1) elif exp_config.data_identifier == 'lidc': thresh = cv2.inRange(s_p_d, 127, 255) lesion, hierarchy = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE) cv2.drawContours(img, lesion, -1, (0, 255, 0), 1) if SAVE_VIDEO: out.write(img) if SAVE_GIF: outfile_gif = os.path.join(outfolder_gif, 'frame_%s.png' % str(ii).zfill(3)) img_rgb = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) # scipy.misc.imsave(outfile_gif, img_rgb) im = Image.fromarray(img_rgb) im = im.resize((im.size[0] * 2, im.size[1] * 2), Image.ANTIALIAS) im.save(outfile_gif) if DISPLAY_VIDEO: cv2.imshow('frame', img) if cv2.waitKey(1) & 0xFF == ord('q'): break if SAVE_VIDEO: out.release() cv2.destroyAllWindows()
def main(model_path, exp_config, model_selection='latest'): # Get Data phiseg_model = phiseg(exp_config=exp_config) phiseg_model.load_weights(model_path, type=model_selection) data_loader = data_switch(exp_config.data_identifier) data = data_loader(exp_config) # Run predictions in an endless loop dice_list = [] num_samples = 1 if exp_config.likelihood is likelihoods.det_unet2D else 100 for ii, batch in enumerate(data.test.iterate_batches(1)): if ii % 10 == 0: logging.info("Progress: %d" % ii) # print(ii) x, y = batch y_ = np.squeeze(phiseg_model.predict(x, num_samples=num_samples)) per_lbl_dice = [] per_pixel_preds = [] per_pixel_gts = [] for lbl in range(exp_config.nlabels): binary_pred = (y_ == lbl) * 1 binary_gt = (y == lbl) * 1 if np.sum(binary_gt) == 0 and np.sum(binary_pred) == 0: per_lbl_dice.append(1) elif np.sum(binary_pred) > 0 and np.sum(binary_gt) == 0 or np.sum( binary_pred) == 0 and np.sum(binary_gt) > 0: logging.warning( 'Structure missing in either GT (x)or prediction. ASSD and HD will not be accurate.' ) per_lbl_dice.append(0) else: per_lbl_dice.append(dc(binary_pred, binary_gt)) dice_list.append(per_lbl_dice) per_pixel_preds.append(y_.flatten()) per_pixel_gts.append(y.flatten()) dice_arr = np.asarray(dice_list) mean_per_lbl_dice = dice_arr.mean(axis=0) logging.info('Dice') logging.info(mean_per_lbl_dice) logging.info(np.mean(mean_per_lbl_dice)) logging.info('foreground mean: %f' % (np.mean(mean_per_lbl_dice[1:]))) np.savez(os.path.join(model_path, 'dice_%s.npz' % model_selection), dice_arr)
def main(model_path, exp_config, do_plots=False): n_samples = 50 model_selection = 'best_ged' # Get Data phiseg_model = phiseg(exp_config=exp_config) phiseg_model.load_weights(model_path, type=model_selection) data_loader = data_switch(exp_config.data_identifier) data = data_loader(exp_config) N = data.test.images.shape[0] ged_list = [] ncc_list = [] for ii in range(N): if ii % 10 == 0: logging.info("Progress: %d" % ii) x_b = data.test.images[ii, ...].reshape([1] + list(exp_config.image_size)) s_b = data.test.labels[ii, ...] x_b_stacked = np.tile(x_b, [n_samples, 1, 1, 1]) feed_dict = {} feed_dict[phiseg_model.training_pl] = False feed_dict[phiseg_model.x_inp] = x_b_stacked s_arr_sm = phiseg_model.sess.run(phiseg_model.s_out_eval_sm, feed_dict=feed_dict) s_arr = np.argmax(s_arr_sm, axis=-1) # s_arr = np.squeeze(np.asarray(s_list)) # num samples x X x Y s_b_r = s_b.transpose((2, 0, 1)) # num gts x X x Y s_b_r_sm = utils.convert_batch_to_onehot( s_b_r, exp_config.nlabels) # num gts x X x Y x nlabels ged = utils.generalised_energy_distance(s_arr, s_b_r, nlabels=exp_config.nlabels - 1, label_range=range( 1, exp_config.nlabels)) ged_list.append(ged) ncc = utils.variance_ncc_dist(s_arr_sm, s_b_r_sm) ncc_list.append(ncc) ged_arr = np.asarray(ged_list) ncc_arr = np.asarray(ncc_list) logging.info('-- GED: --') logging.info(np.mean(ged_arr)) logging.info(np.std(ged_arr)) logging.info('-- NCC: --') logging.info(np.mean(ncc_arr)) logging.info(np.std(ncc_arr)) np.savez( os.path.join(model_path, 'ged%s_%s.npz' % (str(n_samples), model_selection)), ged_arr) np.savez( os.path.join(model_path, 'ncc%s_%s.npz' % (str(n_samples), model_selection)), ncc_arr)
def main(model_path, exp_config): # Make and restore vagan model phiseg_model = phiseg(exp_config=exp_config) phiseg_model.load_weights(model_path, type='best_dice') data_loader = data_switch(exp_config.data_identifier) data = data_loader(exp_config) outfolder = '/home/baumgach/Reports/ETH/MICCAI2019_segvae/raw_figures' ims = exp_config.image_size # x_b, s_b = data.test.next_batch(1) # heart 100 # prostate 165 index = 165 # 100 is a normal image, 15 is a very good slice x_b = data.test.images[index, ...].reshape([1] + list(exp_config.image_size)) if exp_config.data_identifier == 'lidc': s_b = data.test.labels[index, ...] if np.sum(s_b[..., 0]) > 0: s_b = s_b[..., 0] elif np.sum(s_b[..., 1]) > 0: s_b = s_b[..., 1] elif np.sum(s_b[..., 2]) > 0: s_b = s_b[..., 2] else: s_b = s_b[..., 3] s_b = s_b.reshape([1] + list(exp_config.image_size[0:2])) elif exp_config.data_identifier == 'uzh_prostate': s_b = data.test.labels[index, ...] s_b = s_b[..., 0] s_b = s_b.reshape([1] + list(exp_config.image_size[0:2])) else: s_b = data.test.labels[index, ...].reshape([1] + list(exp_config.image_size[0:2])) x_b_for_cnt = utils.convert_to_uint8(np.squeeze(x_b.copy())) x_b_for_cnt = cv2.cvtColor(x_b_for_cnt, cv2.COLOR_GRAY2BGR) x_b_for_cnt = utils.resize_image(x_b_for_cnt, (2 * ims[0], 2 * ims[1]), interp=cv2.INTER_NEAREST) x_b_for_cnt = utils.histogram_equalization(x_b_for_cnt) for ss in range(3): print(ss) s_p_list = phiseg_model.predict_segmentation_sample_levels( x_b, return_softmax=False) accum_list = [None] * exp_config.latent_levels accum_list[exp_config.latent_levels - 1] = s_p_list[-1] for lvl in reversed(range(exp_config.latent_levels - 1)): accum_list[lvl] = accum_list[lvl + 1] + s_p_list[lvl] print('Plotting accum_list') for ii, img in enumerate(accum_list): plt.figure() img = utils.resize_image(np.squeeze(np.argmax(img, axis=-1)), (2 * ims[0], 2 * ims[1]), interp=cv2.INTER_NEAREST) plt.imshow(img[2 * 30:2 * 192 - 2 * 30, 2 * 30:2 * 192 - 2 * 30], cmap='gray') plt.axis('off') plt.savefig(os.path.join(outfolder, 'segm_lvl_%d_samp_%d.png' % (ii, ss)), bbox_inches='tight') print('Plotting s_p_list') for ii, img in enumerate(s_p_list): img = utils.softmax(img) plt.figure() img = utils.resize_image(np.squeeze(img[..., 1]), (2 * ims[0], 2 * ims[1]), interp=cv2.INTER_NEAREST) plt.imshow(img[2 * 30:2 * 192 - 2 * 30, 2 * 30:2 * 192 - 2 * 30], cmap='gray') plt.axis('off') plt.savefig(os.path.join(outfolder, 'residual_lvl_%d_samp_%d.png' % (ii, ss)), bbox_inches='tight') s_p_d = np.uint8((np.squeeze(np.argmax(accum_list[0], axis=-1)) / (exp_config.nlabels - 1)) * 255) s_p_d = utils.resize_image(s_p_d, (2 * ims[0], 2 * ims[1]), interp=cv2.INTER_NEAREST) print('Calculating contours') print(np.unique(s_p_d)) rv = cv2.inRange(s_p_d, 84, 86) my = cv2.inRange(s_p_d, 169, 171) rv_cnt, hierarchy = cv2.findContours(rv, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE) my_cnt, hierarchy = cv2.findContours(my, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE) x_b_for_cnt = cv2.drawContours(x_b_for_cnt, rv_cnt, -1, (0, 255, 0), 1) x_b_for_cnt = cv2.drawContours(x_b_for_cnt, my_cnt, -1, (0, 0, 255), 1) x_b_for_cnt = cv2.cvtColor(x_b_for_cnt, cv2.COLOR_BGR2RGB) print('Plotting final images...') plt.figure() plt.imshow(x_b_for_cnt[2 * 30:2 * 192 - 2 * 30, 2 * 30:2 * 192 - 2 * 30, :], cmap='gray') plt.axis('off') plt.savefig(os.path.join(outfolder, 'input_img_cnts.png'), bbox_inches='tight') plt.figure() x_b = utils.convert_to_uint8(x_b) x_b = cv2.cvtColor(np.squeeze(x_b), cv2.COLOR_GRAY2BGR) x_b = utils.histogram_equalization(x_b) x_b = utils.resize_image(x_b, (2 * ims[0], 2 * ims[1]), interp=cv2.INTER_NEAREST) plt.imshow(x_b[2 * 30:2 * 192 - 2 * 30, 2 * 30:2 * 192 - 2 * 30], cmap='gray') plt.axis('off') plt.savefig(os.path.join(outfolder, 'input_img.png'), bbox_inches='tight') plt.figure() s_b = utils.resize_image(np.squeeze(s_b), (2 * ims[0], 2 * ims[1]), interp=cv2.INTER_NEAREST) plt.imshow(s_b[2 * 30:2 * 192 - 2 * 30, 2 * 30:2 * 192 - 2 * 30], cmap='gray') plt.axis('off') plt.savefig(os.path.join(outfolder, 'gt_seg.png'), bbox_inches='tight')
def test(model_path, exp_config, model_selection='latest', num_samples=100, overwrite=False, mode=False): output_path = get_output_path(model_path, num_samples, model_selection, mode) + '.pickle' if os.path.exists(output_path) and not overwrite: return image_saver = ImageSaver(os.path.join(model_path, 'samples')) tf.reset_default_graph() phiseg_model = phiseg(exp_config=exp_config) phiseg_model.load_weights(model_path, type=model_selection) data_loader = data_switch(exp_config.data_identifier) data = data_loader(exp_config) metrics = {key: [] for key in ['dsc', 'presence', 'ged', 'ncc', 'entropy', 'diversity', 'sample_dsc', 'ece', 'unweighted_ece', 'loglikelihood']} num_samples = 1 if exp_config.likelihood is likelihoods.det_unet2D else num_samples for ii in tqdm(range(data.test.images.shape[0])): image = data.test.images[ii, ...].reshape([1] + list(exp_config.image_size)) targets = data.test.labels[ii, ...].transpose((2, 0, 1)) feed_dict = {phiseg_model.training_pl: False, phiseg_model.x_inp: np.tile(image, [num_samples, 1, 1, 1])} prob_maps = phiseg_model.sess.run(phiseg_model.s_out_eval_sm, feed_dict=feed_dict) samples = np.argmax(prob_maps, axis=-1) probability = np.mean(prob_maps, axis=0) + 1e-10 metrics['entropy'].append(float(np.sum(-probability * np.log(probability)))) if mode: prediction = np.round(np.mean(np.argmax(prob_maps, axis=-1), axis=0)).astype(np.int64) else: if 'proposed' not in exp_config.experiment_name: prediction = np.argmax(np.sum(prob_maps, axis=0), axis=-1) else: mean = phiseg_model.sess.run(phiseg_model.dist_eval.loc, feed_dict=feed_dict)[0] mean = np.reshape(mean, image.shape[:-1] + (2,)) prediction = np.argmax(mean, axis=-1) metrics['loglikelihood'].append(calculate_log_likelihood(targets, prob_maps)) # calculate DSC per expert metrics['dsc'].append( [[calc_dsc(target == i, prediction == i) for i in range(exp_config.nlabels)] for target in targets]) metrics['presence'].append([[np.any(target == i) for i in range(exp_config.nlabels)] for target in targets]) metrics['sample_dsc'].append([[[calc_dsc(target == i, sample == i) for i in range(exp_config.nlabels)] for target in targets] for sample in samples]) # ged and diversity ged_, diversity_ = utils.generalised_energy_distance(samples, targets, exp_config.nlabels - 1, range(1, exp_config.nlabels)) metrics['ged'].append(ged_) metrics['diversity'].append(diversity_) # NCC targets_one_hot = utils.to_one_hot(targets, exp_config.nlabels) metrics['ncc'].append(utils.variance_ncc_dist(prob_maps, targets_one_hot)[0]) prob_map = np.mean(prob_maps, axis=0) ece, unweighted_ece = calc_class_wise_expected_calibration_error(targets, prob_map, 2, 10) metrics['ece'].append(ece) metrics['unweighted_ece'].append(unweighted_ece) image_saver(str(ii) + '/', image[0, ..., 0], targets, prediction, samples) metrics = {key: np.array(metric) for key, metric in metrics.items()} with open(output_path, 'wb') as f: pickle.dump(metrics, f) image_saver.close()