def main(model_path, exp_config): # Make and restore vagan model segvae_model = segvae(exp_config=exp_config) segvae_model.load_weights(model_path, type='latest') data_loader = data_switch(exp_config.data_identifier) data = data_loader(exp_config) ncc_list = [] for ii, batch in enumerate(data.test.iterate_batches(1)): if ii % 10 == 0: print('Progress: %d' % ii) x_b, s_b = batch s_m, s_v, s_e = segvae_model.predict_mean_variance_and_error_maps( s_b, x_b, num_samples=100) ncc_list.append(utils.ncc(s_v, s_e)) ncc_arr = np.asarray(ncc_list) ncc_mean = np.mean(ncc_arr, axis=0) ncc_std = np.std(ncc_arr, axis=0) print('NCC mean: %.4f', ncc_mean) print('NCC std: %.4f', ncc_std)
def main(model_path, exp_config, do_plots=False): n_samples = 50 model_selection = 'best_ged' # Get Data segvae_model = segvae(exp_config=exp_config) segvae_model.load_weights(model_path, type=model_selection) data_loader = data_switch(exp_config.data_identifier) data = data_loader(exp_config) N = data.test.images.shape[0] ged_list = [] ncc_list = [] for ii in range(N): if ii % 10 == 0: logging.info("Progress: %d" % ii) x_b = data.test.images[ii, ...].reshape([1] + list(exp_config.image_size)) s_b = data.test.labels[ii, ...] x_b_stacked = np.tile(x_b, [n_samples, 1, 1, 1]) feed_dict = {} feed_dict[segvae_model.training_pl] = False feed_dict[segvae_model.x_inp] = x_b_stacked s_arr_sm = segvae_model.sess.run(segvae_model.s_out_eval_sm, feed_dict=feed_dict) s_arr = np.argmax(s_arr_sm, axis=-1) # s_arr = np.squeeze(np.asarray(s_list)) # num samples x X x Y s_b_r = s_b.transpose((2,0,1)) # num gts x X x Y s_b_r_sm = utils.convert_batch_to_onehot(s_b_r, exp_config.nlabels) # num gts x X x Y x nlabels ged = utils.generalised_energy_distance(s_arr, s_b_r, nlabels=exp_config.nlabels-1, label_range=range(1,exp_config.nlabels)) ged_list.append(ged) ncc = utils.variance_ncc_dist(s_arr_sm, s_b_r_sm) ncc_list.append(ncc) ged_arr = np.asarray(ged_list) ncc_arr = np.asarray(ncc_list) logging.info('-- GED: --') logging.info(np.mean(ged_arr)) logging.info(np.std(ged_arr)) logging.info('-- NCC: --') logging.info(np.mean(ncc_arr)) logging.info(np.std(ncc_arr)) np.savez(os.path.join(model_path, 'ged%s_%s.npz' % (str(n_samples), model_selection)), ged_arr) np.savez(os.path.join(model_path, 'ncc%s_%s.npz' % (str(n_samples), model_selection)), ncc_arr)
def main(exp_config): logging.info( '**************************************************************') logging.info(' *** Running Experiment: %s', exp_config.experiment_name) logging.info( '**************************************************************') # Get Data data_loader = data_switch(exp_config.data_identifier) data = data_loader(exp_config) # Create Model segvae = phiseg_model.segvae(exp_config) # Fit model to data segvae.train(data)
def main(model_path, exp_config): # Make and restore vagan model segvae_model = segvae(exp_config=exp_config) segvae_model.load_weights(model_path, type='best_dice') data_loader = data_switch(exp_config.data_identifier) data = data_loader(exp_config) outfolder = '/home/baumgach/Reports/ETH/MICCAI2019_segvae/raw_figures' ims = exp_config.image_size # x_b, s_b = data.test.next_batch(1) # heart 100 # prostate 165 index = 165 # 100 is a normal image, 15 is a very good slice x_b = data.test.images[index, ...].reshape([1] + list(exp_config.image_size)) if exp_config.data_identifier == 'lidc': s_b = data.test.labels[index, ...] if np.sum(s_b[..., 0]) > 0: s_b = s_b[..., 0] elif np.sum(s_b[..., 1]) > 0: s_b = s_b[..., 1] elif np.sum(s_b[..., 2]) > 0: s_b = s_b[..., 2] else: s_b = s_b[..., 3] s_b = s_b.reshape([1] + list(exp_config.image_size[0:2])) elif exp_config.data_identifier == 'uzh_prostate': s_b = data.test.labels[index, ...] s_b = s_b[..., 0] s_b = s_b.reshape([1] + list(exp_config.image_size[0:2])) else: s_b = data.test.labels[index, ...].reshape([1] + list(exp_config.image_size[0:2])) x_b_for_cnt = utils.convert_to_uint8(np.squeeze(x_b.copy())) x_b_for_cnt = cv2.cvtColor(x_b_for_cnt, cv2.COLOR_GRAY2BGR) x_b_for_cnt = utils.resize_image(x_b_for_cnt, (2 * ims[0], 2 * ims[1]), interp=cv2.INTER_NEAREST) x_b_for_cnt = utils.histogram_equalization(x_b_for_cnt) for ss in range(3): print(ss) s_p_list = segvae_model.predict_segmentation_sample_levels( x_b, return_softmax=False) accum_list = [None] * exp_config.latent_levels accum_list[exp_config.latent_levels - 1] = s_p_list[-1] for lvl in reversed(range(exp_config.latent_levels - 1)): accum_list[lvl] = accum_list[lvl + 1] + s_p_list[lvl] print('Plotting accum_list') for ii, img in enumerate(accum_list): plt.figure() img = utils.resize_image(np.squeeze(np.argmax(img, axis=-1)), (2 * ims[0], 2 * ims[1]), interp=cv2.INTER_NEAREST) plt.imshow(img[2 * 30:2 * 192 - 2 * 30, 2 * 30:2 * 192 - 2 * 30], cmap='gray') plt.axis('off') plt.savefig(os.path.join(outfolder, 'segm_lvl_%d_samp_%d.png' % (ii, ss)), bbox_inches='tight') print('Plotting s_p_list') for ii, img in enumerate(s_p_list): img = utils.softmax(img) plt.figure() img = utils.resize_image(np.squeeze(img[..., 1]), (2 * ims[0], 2 * ims[1]), interp=cv2.INTER_NEAREST) plt.imshow(img[2 * 30:2 * 192 - 2 * 30, 2 * 30:2 * 192 - 2 * 30], cmap='gray') plt.axis('off') plt.savefig(os.path.join(outfolder, 'residual_lvl_%d_samp_%d.png' % (ii, ss)), bbox_inches='tight') s_p_d = np.uint8((np.squeeze(np.argmax(accum_list[0], axis=-1)) / (exp_config.nlabels - 1)) * 255) s_p_d = utils.resize_image(s_p_d, (2 * ims[0], 2 * ims[1]), interp=cv2.INTER_NEAREST) print('Calculating contours') print(np.unique(s_p_d)) rv = cv2.inRange(s_p_d, 84, 86) my = cv2.inRange(s_p_d, 169, 171) rv_cnt, hierarchy = cv2.findContours(rv, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE) my_cnt, hierarchy = cv2.findContours(my, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE) x_b_for_cnt = cv2.drawContours(x_b_for_cnt, rv_cnt, -1, (0, 255, 0), 1) x_b_for_cnt = cv2.drawContours(x_b_for_cnt, my_cnt, -1, (0, 0, 255), 1) x_b_for_cnt = cv2.cvtColor(x_b_for_cnt, cv2.COLOR_BGR2RGB) print('Plotting final images...') plt.figure() plt.imshow(x_b_for_cnt[2 * 30:2 * 192 - 2 * 30, 2 * 30:2 * 192 - 2 * 30, :], cmap='gray') plt.axis('off') plt.savefig(os.path.join(outfolder, 'input_img_cnts.png'), bbox_inches='tight') plt.figure() x_b = utils.convert_to_uint8(x_b) x_b = cv2.cvtColor(np.squeeze(x_b), cv2.COLOR_GRAY2BGR) x_b = utils.histogram_equalization(x_b) x_b = utils.resize_image(x_b, (2 * ims[0], 2 * ims[1]), interp=cv2.INTER_NEAREST) plt.imshow(x_b[2 * 30:2 * 192 - 2 * 30, 2 * 30:2 * 192 - 2 * 30], cmap='gray') plt.axis('off') plt.savefig(os.path.join(outfolder, 'input_img.png'), bbox_inches='tight') plt.figure() s_b = utils.resize_image(np.squeeze(s_b), (2 * ims[0], 2 * ims[1]), interp=cv2.INTER_NEAREST) plt.imshow(s_b[2 * 30:2 * 192 - 2 * 30, 2 * 30:2 * 192 - 2 * 30], cmap='gray') plt.axis('off') plt.savefig(os.path.join(outfolder, 'gt_seg.png'), bbox_inches='tight')
def main(model_path, exp_config): # Make and restore vagan model segvae_model = segvae(exp_config=exp_config) segvae_model.load_weights(model_path, type='best_ged') data_loader = data_switch(exp_config.data_identifier) data = data_loader(exp_config) lat_lvls = exp_config.latent_levels # RANDOM IMAGE # x_b, s_b = data.test.next_batch(1) # FIXED IMAGE # Cardiac: 100 normal image # LIDC: 200 large lesion, 203, 1757 complicated lesion # Prostate: 165 nice slice index = 165 # x_b = data.test.images[index, ...].reshape([1] + list(exp_config.image_size)) x_b_d = utils.convert_to_uint8(np.squeeze(x_b)) x_b_d = utils.resize_image(x_b_d, video_target_size) if SAVE_VIDEO: fourcc = cv2.VideoWriter_fourcc(*'XVID') outfile = os.path.join(model_path, 'model_samples_id%d.avi' % index) out = cv2.VideoWriter(outfile, fourcc, 5.0, (2 * video_target_size[1], video_target_size[0])) samps = 50 for _ in range(samps): # fix all below current level (the correct implementation) feed_dict = {} feed_dict[segvae_model.training_pl] = False feed_dict[segvae_model.x_inp] = x_b s_p, s_p_list = segvae_model.sess.run( [segvae_model.s_out_eval, segvae_model.s_out_eval_list], feed_dict=feed_dict) s_p = np.argmax(s_p, axis=-1) # s_p_d = utils.convert_to_uint8(np.squeeze(s_p)) s_p_d = np.squeeze(np.uint8((s_p / exp_config.nlabels) * 255)) s_p_d = utils.resize_image(s_p_d, video_target_size, interp=cv2.INTER_NEAREST) img = np.concatenate([x_b_d, s_p_d], axis=1) img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR) img = histogram_equalization(img) if exp_config.data_identifier == 'acdc': # labels (0 85 170 255) rv = cv2.inRange(s_p_d, 84, 86) my = cv2.inRange(s_p_d, 169, 171) rv_cnt, hierarchy = cv2.findContours(rv, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE) my_cnt, hierarchy = cv2.findContours(my, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE) cv2.drawContours(img, rv_cnt, -1, (0, 255, 0), 1) cv2.drawContours(img, my_cnt, -1, (0, 0, 255), 1) if exp_config.data_identifier == 'uzh_prostate': # labels (0 85 170 255) print(np.unique(s_p_d)) s1 = cv2.inRange(s_p_d, 84, 86) s2 = cv2.inRange(s_p_d, 169, 171) # s3 = cv2.inRange(s_p_d, 190, 192) s1_cnt, hierarchy = cv2.findContours(s1, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE) s2_cnt, hierarchy = cv2.findContours(s2, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE) # s3_cnt, hierarchy = cv2.findContours(s3, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE) cv2.drawContours(img, s1_cnt, -1, (0, 255, 0), 1) cv2.drawContours(img, s2_cnt, -1, (0, 0, 255), 1) # cv2.drawContours(img, s3_cnt, -1, (255, 0, 255), 1) elif exp_config.data_identifier == 'lidc': thresh = cv2.inRange(s_p_d, 127, 255) lesion, hierarchy = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE) cv2.drawContours(img, lesion, -1, (0, 255, 0), 1) if SAVE_VIDEO: out.write(img) cv2.imshow('frame', img) if cv2.waitKey(1) & 0xFF == ord('q'): break if SAVE_VIDEO: out.release() cv2.destroyAllWindows()
def main(model_path, exp_config): # Make and restore vagan model segvae_model = segvae(exp_config=exp_config) segvae_model.load_weights(model_path, type=model_selection) data_loader = data_switch(exp_config.data_identifier) data = data_loader(exp_config) N = data.test.images.shape[0] n_images = 16 n_samples = 16 # indices = np.arange(N) # sample_inds = np.random.choice(indices, n_images) sample_inds = [165, 280, 213] # <-- prostate # sample_inds = [1551] #[907, 1296, 1551] # <-- LIDC for ii in sample_inds: print('------- Processing image %d -------' % ii) outfolder = os.path.join(model_path, 'samples_%s' % model_selection, str(ii)) utils.makefolder(outfolder) x_b = data.test.images[ii, ...].reshape([1] + list(exp_config.image_size)) s_b = data.test.labels[ii, ...] if np.sum(s_b) < 10: print('WARNING: skipping cases with no structures') continue s_b_r = utils.convert_batch_to_onehot(s_b.transpose((2, 0, 1)), exp_config.nlabels) print('Plotting input image') plt.figure() x_b_d = preproc_image(x_b) plt.imshow(x_b_d, cmap='gray') plt.axis('off') plt.savefig(os.path.join(outfolder, 'input_img_%d.png' % ii), bbox_inches='tight') print('Generating 100 samples') s_p_list = [] for kk in range(100): s_p_list.append( segvae_model.predict_segmentation_sample(x_b, return_softmax=True)) s_p_arr = np.squeeze(np.asarray(s_p_list)) print('Plotting %d of those samples' % n_samples) for jj in range(n_samples): s_p_sm = s_p_arr[jj, ...] s_p_am = np.argmax(s_p_sm, axis=-1) plt.figure() s_p_d = preproc_image(s_p_am, nlabels=exp_config.nlabels) plt.imshow(s_p_d, cmap='gray') plt.axis('off') plt.savefig(os.path.join(outfolder, 'sample_img_%d_samp_%d.png' % (ii, jj)), bbox_inches='tight') print('Plotting ground-truths masks') for jj in range(s_b_r.shape[0]): s_b_sm = s_b_r[jj, ...] s_b_am = np.argmax(s_b_sm, axis=-1) plt.figure() s_p_d = preproc_image(s_b_am, nlabels=exp_config.nlabels) plt.imshow(s_p_d, cmap='gray') plt.axis('off') plt.savefig(os.path.join(outfolder, 'gt_img_%d_samp_%d.png' % (ii, jj)), bbox_inches='tight') print('Generating error masks') E_ss, E_sy_avg, E_yy_avg = generate_error_maps(s_p_arr, s_b_r) print('Plotting them') plt.figure() plt.imshow(preproc_image(E_ss)) plt.axis('off') plt.savefig(os.path.join(outfolder, 'E_ss_%d.png' % ii), bbox_inches='tight') print('Plotting them') plt.figure() plt.imshow(preproc_image(np.log(E_ss))) plt.axis('off') plt.savefig(os.path.join(outfolder, 'log_E_ss_%d.png' % ii), bbox_inches='tight') plt.figure() plt.imshow(preproc_image(E_sy_avg)) plt.axis('off') plt.savefig(os.path.join(outfolder, 'E_sy_avg_%d_.png' % ii), bbox_inches='tight') plt.figure() plt.imshow(preproc_image(E_yy_avg)) plt.axis('off') plt.savefig(os.path.join(outfolder, 'E_yy_avg_%d_.png' % ii), bbox_inches='tight') plt.close('all')
def main(model_path, exp_config, do_plots=False): # Get Data segvae_model = segvae(exp_config=exp_config) segvae_model.load_weights(model_path, type=model_selection) data_loader = data_switch(exp_config.data_identifier) data = data_loader(exp_config) # Run predictions in an endless loop dice_list = [] num_samples = 1 if exp_config.likelihood is likelihoods.det_unet2D else 100 for ii, batch in enumerate(data.test.iterate_batches(1)): if ii % 10 == 0: logging.info("Progress: %d" % ii) # print(ii) x, y = batch # Adding motion corrpution # x = utils.add_motion_artefacts(np.squeeze(x), 15) # x = x.reshape([1] + list(exp_config.image_size)) # Add box corruption # x[:, 192 // 2 - 20:192 // 2 + 20, 192 // 2 - 5:192 // 2 + 5, :] = 0 y_ = np.squeeze(segvae_model.predict(x, num_samples=num_samples)) per_lbl_dice = [] per_pixel_preds = [] per_pixel_gts = [] if do_plots and not sys_config.running_on_gpu_host: fig = plt.figure() fig.add_subplot(131) plt.imshow(np.squeeze(x), cmap='gray') fig.add_subplot(132) plt.imshow(np.squeeze(y_)) fig.add_subplot(133) plt.imshow(np.squeeze(y)) plt.show() for lbl in range(exp_config.nlabels): binary_pred = (y_ == lbl) * 1 binary_gt = (y == lbl) * 1 if np.sum(binary_gt) == 0 and np.sum(binary_pred) == 0: per_lbl_dice.append(1) elif np.sum(binary_pred) > 0 and np.sum(binary_gt) == 0 or np.sum( binary_pred) == 0 and np.sum(binary_gt) > 0: logging.warning( 'Structure missing in either GT (x)or prediction. ASSD and HD will not be accurate.' ) per_lbl_dice.append(0) else: per_lbl_dice.append(dc(binary_pred, binary_gt)) dice_list.append(per_lbl_dice) per_pixel_preds.append(y_.flatten()) per_pixel_gts.append(y.flatten()) dice_arr = np.asarray(dice_list) mean_per_lbl_dice = dice_arr.mean(axis=0) logging.info('Dice') logging.info(mean_per_lbl_dice) logging.info(np.mean(mean_per_lbl_dice)) logging.info('foreground mean: %f' % (np.mean(mean_per_lbl_dice[1:]))) np.savez(os.path.join(model_path, 'dice_%s.npz' % model_selection), dice_arr)
def main(model_path, exp_config): # Make and restore vagan model segvae_model = segvae(exp_config=exp_config) segvae_model.load_weights(model_path, type='best_ged') data_loader = data_switch(exp_config.data_identifier) data = data_loader(exp_config) lat_lvls = exp_config.latent_levels # RANDOM IMAGE # x_b, s_b = data.test.next_batch(1) # FIXED IMAGE # Cardiac: 100 normal image # LIDC: 200 large lesion, 203, 1757 complicated lesion # Prostate: 165 nice slice index = 165 # x_b = data.test.images[index, ...].reshape([1] + list(exp_config.image_size)) if exp_config.data_identifier == 'lidc': s_b = data.test.labels[index, ...] if np.sum(s_b[..., 0]) > 0: s_b = s_b[..., 0] elif np.sum(s_b[..., 1]) > 0: s_b = s_b[..., 1] elif np.sum(s_b[..., 2]) > 0: s_b = s_b[..., 2] else: s_b = s_b[..., 3] s_b = s_b.reshape([1] + list(exp_config.image_size[0:2])) elif exp_config.data_identifier == 'uzh_prostate': s_b = data.test.labels[index, ...] s_b = s_b[..., 0] s_b = s_b.reshape([1] + list(exp_config.image_size[0:2])) else: s_b = data.test.labels[index, ...].reshape([1] + list(exp_config.image_size[0:2])) # # print(x_b.shape) # print(s_b.shape) # x_b[:,30:64+10,64:64+10,:] = np.mean(x_b) # # x_b = utils.add_motion_artefacts(np.squeeze(x_b), 15) # x_b = x_b.reshape([1]+list(exp_config.image_size)) x_b_d = utils.convert_to_uint8(np.squeeze(x_b)) x_b_d = utils.resize_image(x_b_d, video_target_size) s_b_d = np.squeeze(np.uint8((s_b / exp_config.nlabels) * 255)) s_b_d = utils.resize_image(s_b_d, video_target_size, interp=cv2.INTER_NEAREST) _, mu_list_init, _ = segvae_model.generate_prior_samples( x_b, return_params=True) if SAVE_VIDEO: fourcc = cv2.VideoWriter_fourcc(*'XVID') outfile = os.path.join(model_path, 'samplevid_id%d.avi' % index) out = cv2.VideoWriter(outfile, fourcc, 10.0, (3 * video_target_size[1], video_target_size[0])) for lvl in reversed(range(lat_lvls)): samps = 50 if lat_lvls > 1 else 200 for _ in range(samps): # z_list, mu_list, sigma_list = segvae_model.generate_prior_samples(x_b, return_params=True) print('doing level %d/%d' % (lvl, lat_lvls)) # fix all below current level # for jj in range(lvl,lat_lvls-1): # z_list[jj+1] = mu_list_init[jj+1] # fix jj's level to mu # sample only current level # z_list_new = z_list.copy() # for jj in range(lat_lvls): # z_list_new[jj] = mu_list_init[jj] # z_list_new[lvl] = z_list[lvl] # z_list = z_list_new # # print('z means') # for jj, z in enumerate(z_list): # print('lvl %d: %.3f' % (jj, np.mean(z))) # # # feed_dict = {i: d for i, d in zip(segvae_model.prior_z_list_gen, z_list)} # feed_dict[segvae_model.training_pl] = False # # fix all below current level (the correct implementation) feed_dict = {} for jj in range(lvl, lat_lvls - 1): feed_dict[segvae_model.prior_z_list_gen[jj + 1]] = mu_list_init[jj + 1] feed_dict[segvae_model.training_pl] = False feed_dict[segvae_model.x_inp] = x_b s_p, s_p_list = segvae_model.sess.run( [segvae_model.s_out_eval, segvae_model.s_out_eval_list], feed_dict=feed_dict) s_p = np.argmax(s_p, axis=-1) print(np.unique(s_p)) # print('mean logits for myo cardium per level') # fig = plt.figure() # # cumsum = np.zeros((128,128)) # cumsum_all = np.zeros((128,128,4)) # for i, s in enumerate(reversed(s_p_list)): # # cumsum += s[0,:,:,2] # cumsum_all += s[0,:,:,:] # # fig.add_subplot(4,4,i+1) # plt.imshow(s[0,:,:,2]) # # fig.add_subplot(4,4,i+1+4) # plt.imshow(cumsum) # # fig.add_subplot(4,4,i+1+8) # plt.imshow(1./(1+np.exp(-cumsum))) # # fig.add_subplot(4,4,i+1+12) # plt.imshow(np.argmax(cumsum_all, axis=-1)) # # # plt.show() # DEUBG # cum_img = np.squeeze(s_p_list[lat_lvls-1]) # cum_img_disp = softmax(cum_img) # # indiv_img = np.squeeze(s_p_list[lat_lvls-1]) # indiv_img_disp = softmax(indiv_img) # # for ii in reversed(range(lat_lvls-1)): # cum_img += np.squeeze(s_p_list[ii]) # indiv_img = np.squeeze(s_p_list[ii]) # # cum_img_disp = np.concatenate([cum_img_disp, softmax(cum_img)], axis=1) # indiv_img_disp = np.concatenate([indiv_img_disp, softmax(indiv_img)], axis=1) # # # cum_img_disp = utils.convert_to_uint8(np.argmax(cum_img_disp, axis=-1)) # indiv_img_disp = utils.convert_to_uint8(indiv_img_disp[:,:,2]) # # cum_img_disp = np.concatenate([cum_img_disp, indiv_img_disp], axis=0) # # # print('cum img shape') # print(cum_img_disp.shape) # cv2.imshow('debug', cum_img_disp) # END DEBUG # s_p_d = utils.convert_to_uint8(np.squeeze(s_p)) s_p_d = np.squeeze(np.uint8((s_p / exp_config.nlabels) * 255)) s_p_d = utils.resize_image(s_p_d, video_target_size, interp=cv2.INTER_NEAREST) img = np.concatenate([x_b_d, s_b_d, s_p_d], axis=1) img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR) img = histogram_equalization(img) if exp_config.data_identifier == 'acdc': # labels (0 85 170 255) rv = cv2.inRange(s_p_d, 84, 86) my = cv2.inRange(s_p_d, 169, 171) rv_cnt, hierarchy = cv2.findContours(rv, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE) my_cnt, hierarchy = cv2.findContours(my, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE) cv2.drawContours(img, rv_cnt, -1, (0, 255, 0), 1) cv2.drawContours(img, my_cnt, -1, (0, 0, 255), 1) if exp_config.data_identifier == 'uzh_prostate': # labels (0 85 170 255) print(np.unique(s_p_d)) s1 = cv2.inRange(s_p_d, 84, 86) s2 = cv2.inRange(s_p_d, 169, 171) # s3 = cv2.inRange(s_p_d, 190, 192) s1_cnt, hierarchy = cv2.findContours(s1, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE) s2_cnt, hierarchy = cv2.findContours(s2, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE) # s3_cnt, hierarchy = cv2.findContours(s3, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE) cv2.drawContours(img, s1_cnt, -1, (0, 255, 0), 1) cv2.drawContours(img, s2_cnt, -1, (0, 0, 255), 1) # cv2.drawContours(img, s3_cnt, -1, (255, 0, 255), 1) elif exp_config.data_identifier == 'lidc': thresh = cv2.inRange(s_p_d, 127, 255) lesion, hierarchy = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE) cv2.drawContours(img, lesion, -1, (0, 255, 0), 1) font = cv2.FONT_HERSHEY_SIMPLEX cv2.putText(img, 'Sampling level %d/%d' % (lvl + 1, lat_lvls), (30, 256 - 30), font, 1, (255, 255, 255), 1, cv2.LINE_AA) print('actual size') print(img.shape) if SAVE_VIDEO: out.write(img) cv2.imshow('frame', img) if cv2.waitKey(1) & 0xFF == ord('q'): break if SAVE_VIDEO: out.release() cv2.destroyAllWindows()