Example #1
0
def get_displaced_structures(pmg_structure,
                             atom_disp=0.01,
                             supercell_matrix=None,
                             yaml_fname=None,
                             **kwargs):
    """
    Generate a set of symmetrically inequivalent displaced structures for
    phonon calculations.

    Args:
        pmg_structure (Structure): A pymatgen structure object.
        atom_disp (float): Atomic displacement. Default is 0.01 $\\AA$.
        supercell_matrix (3x3 array): Scaling matrix for supercell.
        yaml_fname (string): If not None, it represents the full path to
            the outputting displacement yaml file, e.g. disp.yaml.
        **kwargs: Parameters used in Phonopy.generate_displacement method.

    Return:
        A list of symmetrically inequivalent structures with displacements, in
        which the first element is the perfect supercell structure.
    """

    is_plusminus = kwargs.get("is_plusminus", "auto")
    is_diagonal = kwargs.get("is_diagonal", True)
    is_trigonal = kwargs.get("is_trigonal", False)

    ph_structure = get_phonopy_structure(pmg_structure)

    if supercell_matrix is None:
        supercell_matrix = np.eye(3) * np.array((1, 1, 1))

    phonon = Phonopy(unitcell=ph_structure, supercell_matrix=supercell_matrix)
    phonon.generate_displacements(distance=atom_disp,
                                  is_plusminus=is_plusminus,
                                  is_diagonal=is_diagonal,
                                  is_trigonal=is_trigonal)

    if yaml_fname is not None:
        displacements = phonon.get_displacements()
        directions = phonon.get_displacement_directions()
        write_disp_yaml(displacements=displacements,
                        supercell=phonon.get_supercell(),
                        directions=directions,
                        filename=yaml_fname)

    # Supercell structures with displacement
    disp_supercells = phonon.get_supercells_with_displacements()
    # Perfect supercell structure
    init_supercell = phonon.get_supercell()
    # Structure list to be returned
    structure_list = [get_pmg_structure(init_supercell)]

    for c in disp_supercells:
        if c is not None:
            structure_list.append(get_pmg_structure(c))

    return structure_list
Example #2
0
def get_displaced_structures(pmg_structure, atom_disp=0.01,
                             supercell_matrix=None, yaml_fname=None, **kwargs):
    """
    Generate a set of symmetrically inequivalent displaced structures for
    phonon calculations.

    Args:
        pmg_structure (Structure): A pymatgen structure object.
        atom_disp (float): Atomic displacement. Default is 0.01 $\\AA$.
        supercell_matrix (3x3 array): Scaling matrix for supercell.
        yaml_fname (string): If not None, it represents the full path to
            the outputting displacement yaml file, e.g. disp.yaml.
        **kwargs: Parameters used in Phonopy.generate_displacement method.

    Return:
        A list of symmetrically inequivalent structures with displacements, in
        which the first element is the perfect supercell structure.
    """

    is_plusminus = kwargs.get("is_plusminus", "auto")
    is_diagonal = kwargs.get("is_diagonal", True)
    is_trigonal = kwargs.get("is_trigonal", False)

    ph_structure = get_phonopy_structure(pmg_structure)

    if supercell_matrix is None:
        supercell_matrix = np.eye(3) * np.array((1, 1, 1))

    phonon = Phonopy(unitcell=ph_structure, supercell_matrix=supercell_matrix)
    phonon.generate_displacements(distance=atom_disp,
                                  is_plusminus=is_plusminus,
                                  is_diagonal=is_diagonal,
                                  is_trigonal=is_trigonal)

    if yaml_fname is not None:
        displacements = phonon.get_displacements()
        directions = phonon.get_displacement_directions()
        write_disp_yaml(displacements=displacements,
                        supercell=phonon.get_supercell(),
                        directions=directions, filename=yaml_fname)

    # Supercell structures with displacement
    disp_supercells = phonon.get_supercells_with_displacements()
    # Perfect supercell structure
    init_supercell = phonon.get_supercell()
    # Structure list to be returned
    structure_list = [get_pmg_structure(init_supercell)]

    for c in disp_supercells:
        if c is not None:
            structure_list.append(get_pmg_structure(c))

    return structure_list
Example #3
0
class PhononFC3Base(TaskElement):
    """PhononFC3Base class

    This is an interface to anharmonic phonopy.

    """

    def __init__(self,
                 directory=None,
                 name=None,
                 supercell_matrix=None,
                 primitive_matrix=None,
                 distance=None,
                 is_diagonal=True,
                 check_imaginary=True,
                 cutoff_frequency=None,
                 lattice_tolerance=None,
                 force_tolerance=None,
                 pressure_target=None,
                 stress_tolerance=None,
                 max_increase=None,
                 max_iteration=None,
                 min_iteration=None,
                 is_cell_relaxed=False,
                 traverse=False):

        TaskElement.__init__(self)

        self._directory = directory
        if not name:
            self._name = directory
        else:
            self._name = name
        self._task_type = "anharmonic_phonon"
        self._supercell_matrix = supercell_matrix
        self._primitive_matrix = primitive_matrix
        self._distance = distance
        self._is_diagonal = is_diagonal
        self._check_imaginary = check_imaginary
        self._cutoff_frequency = cutoff_frequency # determine imaginary freq.
        self._lattice_tolerance = lattice_tolerance
        self._pressure_target = pressure_target
        self._stress_tolerance = stress_tolerance
        self._force_tolerance = force_tolerance
        self._max_increase = max_increase
        self._max_iteration = max_iteration
        self._min_iteration = min_iteration
        self._traverse = traverse
        self._is_cell_relaxed = is_cell_relaxed

        self._stage = 0
        self._tasks = []

        self._energy = None
        self._cell = None
        self._phonon = None # Phonopy object
        self._phonon_fc3 = None # Phono3py object
        self._phonon_fc3_tasks = None

    def get_phonon(self):
        return self._phonon

    def get_phonon_fc3(self):
        for i, task in enumerate(self._phonon_fc3_tasks[1:]):
            forces_fc3.append(task.get_properties()['forces'][-1])
        disp_dataset = self._phonon_fc3.get_displacement_dataset()
        self._phonon_fc3.produce_fc3(forces_fc3)

        return self._phonon_fc3

    def get_cell(self):
        if self._is_cell_relaxed:
            return self._cell
        else:
            return self._phonon_fc3_tasks[0].get_cell()

    def get_energy(self):
        """Return energies at geometry optimization steps"""
        return self._energy

    def set_status(self):
        if self._stage == 0:
            task = self._tasks[0]
            if task.done():
                status = task.get_status()
                if status == "done":
                    self._status = "next"
                else:
                    self._status = status
        else:
            done = True
            terminate = False
            for i, task in enumerate(self._tasks):
                done &= task.done()
                terminate |= (task.get_status() == "terminate")

            if done:
                if terminate:
                    self._status = "terminate"
                else:
                    self._status = "next"

        self._write_yaml()

    def begin(self):
        if not self._job:
            print("set_job has to be executed.")
            raise RuntimeError

        if self._is_cell_relaxed:
            self._phonon_fc3_tasks = [None]
            self._set_stage1()
        else:
            self._set_stage0()

    def end(self):
        pass

    def done(self):
        return (self._status == "terminate" or
                self._status == "done" or
                self._status == "max_iteration" or
                self._status == "next" or
                self._status == "imaginary_mode")

    def __next__(self):
        return self.next()

    def next(self):
        if self._stage == 0:
            if "next" in self._status:
                self._energy = self._tasks[0].get_energy()
                self._comment = "%s\\n%f" % (
                    self._tasks[0].get_space_group()['international'],
                    self._energy)
                self._set_stage1()
                return self._tasks
            elif "terminate" in self._status and self._traverse == "restart":
                self._traverse = False
                self._set_stage0()
                return self._tasks
            else:
                raise StopIteration
        elif self._stage == 1:
            if "next" in self._status:
                disp_dataset = self._phonon_fc3.get_displacement_dataset()
                for disp1, task in zip(disp_dataset['first_atoms'], self._tasks):
                    disp1['forces'] = task.get_properties()['forces'][-1]
                write_FORCE_SETS(disp_dataset)
                self._phonon.set_displacement_dataset(disp_dataset)
                self._phonon.produce_force_constants(
                    calculate_full_force_constants=False)
                if self._exist_imaginary_mode():
                    self._status = "imaginary_mode"
                    self._write_yaml()
                    self._tasks = []
                    raise StopIteration
                else:
                    self._set_stage2()
                    return self._tasks
            elif "terminate" in self._status and self._traverse == "restart":
                self._reset_stage1()
                return self._tasks
            else:
                raise StopIteration
        elif self._stage == 2:
            if "next" in self._status:
                self._status = "done"
                forces_fc3 = []
                for i, task in enumerate(self._phonon_fc3_tasks[1:]):
                    forces_fc3.append(task.get_properties()['forces'][-1])
                disp_dataset = self._phonon_fc3.get_displacement_dataset()
                write_FORCES_FC3(disp_dataset, forces_fc3)
                self._tasks = []
                raise StopIteration
            elif "terminate" in self._status and self._traverse == "restart":
                self._reset_stage2()
                return self._tasks
            else:
                raise StopIteration
        else: # stage2
            pass

    def _set_stage0(self):
        self._status = "equilibrium"
        task = self._get_equilibrium_task()
        self._phonon_fc3_tasks = [task]
        self._tasks = [task]

    def _set_stage1(self):
        self._set_phonon_fc3()
        if self._check_imaginary:
            self._stage = 1
            self._status = "fc2_displacements"
            disp_dataset = self._phonon_fc3.get_displacement_dataset()
            self._tasks = self._get_displacement_tasks(
                stop=len(disp_dataset['first_atoms']))
            self._phonon_fc3_tasks += self._tasks
        else:
            self._set_stage2()

    def _reset_stage1(self):
        self._traverse = False
        disp_terminated = []
        for i, task in enumerate(self._tasks):
            if task.get_status() == "terminate":
                disp_terminated.append(i)
        disp_dataset = self._phonon_fc3.get_displacement_dataset()
        tasks = self._get_displacement_tasks(
            stop=len(disp_dataset['first_atoms']))
        self._tasks = []
        for i in disp_terminated:
            self._tasks.append(tasks[i])
            self._phonon_fc3_tasks[i + 1] = tasks[i]
        self._status = "fc2_displacements"

    def _set_stage2(self):
        self._stage = 2
        self._status = "fc3_displacements"
        if self._check_imaginary:
            disp_dataset = self._phonon_fc3.get_displacement_dataset()
            start_index = len(disp_dataset['first_atoms'])
        else:
            start_index = 0
        self._tasks = self._get_displacement_tasks(start=start_index)
        self._phonon_fc3_tasks += self._tasks

    def _reset_stage2(self):
        self._traverse = False
        disp_terminated = []
        for i, task in enumerate(self._tasks):
            if task.get_status() == "terminate":
                disp_terminated.append(i)

        if self._check_imaginary:
            disp_dataset = self._phonon_fc3.get_displacement_dataset()
            start_index = len(disp_dataset['first_atoms'])
        else:
            start_index = 0
        tasks = self._get_displacement_tasks(start=start_index)
        self._tasks = []
        for i in disp_terminated:
            self._tasks.append(tasks[i])
            self._phonon_fc3_tasks[i + 1 + start_index] = tasks[i]
        self._status = "fc3_displacements"

    def _set_phonon_fc3(self):
        cell = self.get_cell()
        phonopy_cell = cell2atoms(cell)
        self._phonon = Phonopy(phonopy_cell,
                               self._supercell_matrix,
                               primitive_matrix=self._primitive_matrix,
                               dynamical_matrix_decimals=14,
                               force_constants_decimals=14)
        self._phonon_fc3 = Phono3py(phonopy_cell,
                                    self._supercell_matrix,
                                    primitive_matrix=self._primitive_matrix)
        self._phonon_fc3.generate_displacements(distance=self._distance,
                                                is_diagonal=self._is_diagonal)
        supercell = self._phonon_fc3.get_supercell()
        disp_dataset = self._phonon_fc3.get_displacement_dataset()
        self._phonon.set_displacement_dataset(disp_dataset)
        write_poscar(cell, "POSCAR-unitcell")
        write_disp_yaml(self._phonon.get_displacements(),
                        supercell,
                        directions=self._phonon.get_displacement_directions())
        write_disp_fc3_yaml(disp_dataset, supercell)

    def _exist_imaginary_mode(self):
        if self._primitive_matrix is None:
            pmat = np.eye(3)
        else:
            pmat = self._primitive_matrix
        exact_point_matrix = np.dot(np.linalg.inv(self._supercell_matrix),
                                    pmat).T
        max_integer = np.rint(np.amax(np.abs(np.linalg.inv(exact_point_matrix))))
        q_points = []
        for i in np.arange(-max_integer, max_integer + 1):
            for j in np.arange(-max_integer, max_integer + 1):
                for k in np.arange(-max_integer, max_integer + 1):
                    q = np.dot(exact_point_matrix, [i, j, k])
                    if (-1 < q).all() and (q < 1).all():
                        q_points.append(q)
        self._phonon.set_qpoints_phonon(q_points)
        frequencies = self._phonon.get_qpoints_phonon()[0]
        if (frequencies < self._cutoff_frequency).any():
            self._log = "Stop at phonon calculation due to imaginary modes"
            return True
        else:
            return False

    def _write_yaml(self):
        w = open("%s.yaml" % self._directory, 'w')
        if self._lattice_tolerance is not None:
            w.write("lattice_tolerance: %f\n" % self._lattice_tolerance)
        if self._stress_tolerance is not None:
            w.write("stress_tolerance: %f\n" % self._stress_tolerance)
            w.write("pressure_target: %f\n" % self._pressure_target)
        w.write("force_tolerance: %f\n" % self._force_tolerance)
        if self._max_increase is None:
            w.write("max_increase: unset\n")
        else:
            w.write("max_increase: %f\n" % self._max_increase)
        w.write("max_iteration: %d\n" % self._max_iteration)
        w.write("min_iteration: %d\n" % self._min_iteration)
        w.write("supercell_matrix:\n")
        for row in self._supercell_matrix:
            w.write("- [ %3d, %3d, %3d ]\n" % tuple(row))
        if self._primitive_matrix is not None:
            w.write("primitive_matrix:\n")
            for row in self._primitive_matrix:
                w.write("- [ %6.3f, %6.3f, %6.3f ]\n" % tuple(row))
        w.write("distance: %f\n" % self._distance)
        if self._phonon_fc3_tasks[0] is not None:
            w.write("iteration: %d\n" % self._phonon_fc3_tasks[0].get_stage())
            if self._energy:
                w.write("electric_total_energy: %20.10f\n" % self._energy)
        w.write("status: %s\n" % self._status)
        w.write("tasks:\n")
        for task in self._phonon_fc3_tasks:
            if task and task.get_status():
                w.write("- name:   %s\n" % task.get_name())
                w.write("  status: %s\n" % task.get_status())
        w.close()
Example #4
0
def phonopy_run(phonon, single=True, filename='FORCE_SETS'):
    """Run the phonon calculations, using PhonoPy.
    
    The force constants are then stored in the Phonon ASE object.
          
    input:
    
      phonon: ASE Phonon object with Atoms and Calculator
      single: when True, the forces are computed only for a single step, and then
              exit. This allows to split the loop in independent iterations. When
              calling again the 'run' method, already computed steps are ignored,
              missing steps are completed, until no more are needed. When set to
              False, all steps are done in a row.
    
    output:
    
      True when a calculation step was performed, False otherwise or no more is needed.
      nb_of_iterations: the number of steps remaining

    """

    from phonopy import Phonopy
    from phonopy.structure.atoms import Atoms as PAtoms
    from phonopy.structure.atoms import PhonopyAtoms
    import phonopy.file_IO as file_IO

    # we first look if an existing phonon pickle exists. This is the case if we
    # are running with iterative calls while return value is True. The first call
    # will then create the objects, which are subsequently updated until False.

    # Set calculator if provided
    # assert phonon.calc is not None, "Provide calculator in Phonon __init__ method"

    # Atoms in the supercell -- repeated in the lattice vector directions
    # beginning with the last
    supercell = phonon.atoms * phonon.N_c

    # create a PhonopyAtoms object
    cell = PhonopyAtoms(phonon.atoms.get_chemical_symbols(),
                        positions=phonon.atoms.get_positions(),
                        cell=phonon.atoms.get_cell(),
                        magmoms=None)

    # is there an existing PhonoPy calculation ?
    # using factor=6.46541380e-2=VaspToeV
    if os.path.exists('FORCE_SETS'):
        phonpy = Phonopy(cell,
                         numpy.diag(phonon.N_c),
                         primitive_matrix=None,
                         dynamical_matrix_decimals=None,
                         force_constants_decimals=None,
                         symprec=1e-05,
                         is_symmetry=True,
                         use_lapack_solver=False,
                         log_level=1)
        force_sets = file_IO.parse_FORCE_SETS(filename='FORCE_SETS')
        phonpy.set_displacement_dataset(force_sets)
        # inactivate magmoms in supercell as some calculators do not provide that
        phonpy._supercell.magmoms = None
        phonpy.produce_force_constants(calculate_full_force_constants=False)
    else:
        # create a PhonoPy Phonon object.
        phonpy = Phonopy(cell, numpy.diag(phonon.N_c))
        # generate displacements (minimal set)
        phonpy.generate_displacements(distance=0.01)
        # iterative call for all displacements
        set_of_forces, flag, nb_of_iterations = phonopy_run_calculate(
            phonon, phonpy, supercell, single)

        if flag is True:
            return nb_of_iterations  # some more work is required

        sys.stdout.write('[ASE/Phonopy] Computing force constants\n')
        # use symmetry to derive forces in equivalent displacements
        phonpy.produce_force_constants(forces=set_of_forces)

        # generate disp.yaml and FORCE_SETS (for later use)
        displacements = phonpy.get_displacements()
        directions = phonpy.get_displacement_directions()
        file_IO.write_disp_yaml(displacements,
                                phonpy.get_supercell(),
                                directions=directions)
        file_IO.write_FORCE_SETS(phonpy.get_displacement_dataset())

    # store as additional data in atoms 'info'
    phonon.atoms.info["phonopy"] = phonpy

    # save the PhonoPy object
    fid = opencew("phonopy.pkl")
    if fid is not None and rank == 0:
        print("[ASE/Phonopy] Writing %s" % "phonopy.pkl")
        pickle.dump(phonpy, fid, protocol=2)
        fid.close()

    # transfer results to the ASE phonon object
    # Number of atoms (primitive cell)
    natoms = len(phonon.indices)
    # Number of unit cells (supercell)
    N = numpy.prod(phonon.N_c)

    # Phonopy: force_constants size is [N*natoms,N*natoms,3,3]
    # Phi[i,j,a,b] with [i,j = atom in supercell] and [a,b=xyz]
    force_constants = phonpy.get_force_constants()
    # the atoms [i] which are moved are in the first cell of the supercell, i.e.Ni=0
    # the forces are then stored for all atoms [Nj,j] as [3,3] matrices

    # we compute the sum on all supercells, which all contain n atoms.
    C_N = numpy.zeros((N, 3 * natoms, 3 * natoms), dtype=complex)
    Ni = 0
    for Nj in range(N):
        for ni in range(natoms):
            Nni = ni
            for nj in range(natoms):
                # compute Nn indices
                Nnj = Nj * natoms + nj
                # get fc 3x3 matrix
                C_N[Nj, (3 * ni):(3 * ni + 3),
                    (3 * nj):(3 * nj + 3)] += force_constants[Nni][Nnj]

    # convert to ASE storage
    # ASE: phonon.C_N size is be [N, 3*natoms, 3*natoms]
    # Phi[i,j] = Phi[j,i]
    phonon.C_N = C_N

    # fill dynamical matrix (mass prefactor)
    phonon.D_N = phonon.C_N.copy()

    # Add mass prefactor
    m_a = phonon.atoms.get_masses()
    phonon.m_inv_x = numpy.repeat(m_a[phonon.indices]**-0.5, 3)
    M_inv = numpy.outer(phonon.m_inv_x, phonon.m_inv_x)
    for D in phonon.D_N:
        D *= M_inv

    return 0  # nothing left to do