Example #1
0
    def test_classification_9(self):
        for original_hyperpipe in self.hyperpipes:
            pipe = original_hyperpipe.copy_me()

            # crazy everything
            pipe += PipelineElement('StandardScaler')
            pipe += PipelineElement('SamplePairingClassification',
                                    {'draw_limit': [100], 'generator': Categorical(['nearest_pair', 'random_pair'])},
                                    distance_metric='euclidean', test_disabled=True)
            # setup pipeline branches with half of the features each
            # if both PCAs are disabled, features are simply concatenated and passed to the final estimator
            source1_branch = Branch('source1_features')
            # first half of features (for Boston Housing, same as indices=[0, 1, 2, 3, 4, 5]
            source1_branch += DataFilter(indices=np.arange(start=0, stop=int(np.floor(self.X_shape[1] / 2))))
            source1_branch += PipelineElement('PCA', hyperparameters={'n_components': Categorical([None, 5])},
                                              test_disabled=True)

            source2_branch = Branch('source2_features')
            # second half of features (for Boston Housing, same is indices=[6, 7, 8, 9, 10, 11, 12]
            source2_branch += DataFilter(indices=np.arange(start=int(np.floor(self.X_shape[1] / 2)), stop=self.X_shape[1]))
            source2_branch += PipelineElement('PCA', hyperparameters={'n_components': Categorical([None, 5])},
                                              test_disabled=True)
            # setup source branches and stack their output (i.e. horizontal concatenation)
            pipe += Stack('source_stack', elements=[source1_branch, source2_branch])
            # final estimator with stack output as features
            pipe += PipelineElement('RandomForestClassifier', hyperparameters={
                'min_samples_split': FloatRange(start=.05, step=.1, stop=.26, range_type='range')})

            self.run_hyperpipe(pipe, self.classification)
Example #2
0
    def setUp(self):
        self.X, self.y = load_breast_cancer(True)
        self.svc = PipelineElement('SVC', {
            'C': [0.1, 1],
            'kernel': ['rbf', 'sigmoid']
        })
        self.tree = PipelineElement('DecisionTreeClassifier',
                                    {'min_samples_split': [2, 3, 4]})
        self.gpc = PipelineElement('GaussianProcessClassifier')
        self.pca = PipelineElement('PCA')

        self.estimator_branch = Branch('estimator_branch',
                                       [self.tree.copy_me()])
        self.transformer_branch = Branch('transformer_branch',
                                         [self.pca.copy_me()])

        self.estimator_switch = Switch(
            'estimator_switch',
            [self.svc.copy_me(),
             self.tree.copy_me(),
             self.gpc.copy_me()])
        self.estimator_switch_with_branch = Switch(
            'estimator_switch_with_branch',
            [self.tree.copy_me(),
             self.estimator_branch.copy_me()])
        self.transformer_switch_with_branch = Switch(
            'transformer_switch_with_branch',
            [self.pca.copy_me(),
             self.transformer_branch.copy_me()])
        self.switch_in_switch = Switch('Switch_in_switch', [
            self.transformer_branch.copy_me(),
            self.transformer_switch_with_branch.copy_me()
        ])
Example #3
0
    def test_branch_in_branch(self):
        """
        Test for deep Pipeline.
        """

        my_pipe = Hyperpipe(
            "basic_stacking",
            optimizer="grid_search",
            metrics=["accuracy", "precision", "recall"],
            best_config_metric="f1_score",
            outer_cv=KFold(n_splits=2),
            inner_cv=KFold(n_splits=3),
            verbosity=1,
            cache_folder="./cache/",
            output_settings=OutputSettings(project_folder="./tmp/"),
        )

        # BRANCH WITH QUANTILTRANSFORMER AND DECISIONTREECLASSIFIER
        tree_qua_branch = Branch("tree_branch")
        tree_qua_branch += PipelineElement("QuantileTransformer")
        tree_qua_branch += PipelineElement(
            "DecisionTreeClassifier",
            {"min_samples_split": IntegerRange(2, 4)},
            criterion="gini",
        )

        # BRANCH WITH MinMaxScaler AND DecisionTreeClassifier
        svm_mima_branch = Branch("svm_branch")
        svm_mima_branch += PipelineElement("MinMaxScaler")
        svm_mima_branch += PipelineElement(
            "SVC",
            {
                "kernel": ["rbf", "linear"],  # Categorical(['rbf', 'linear']),
                "C": IntegerRange(0.01, 2.0),
            },
            gamma="auto",
        )

        # BRANCH WITH StandardScaler AND KNeighborsClassifier
        knn_sta_branch = Branch("neighbour_branch")
        knn_sta_branch += PipelineElement("StandardScaler")
        knn_sta_branch += PipelineElement("KNeighborsClassifier")

        # voting = True to mean the result of every branch
        my_pipe += Stack("final_stack",
                         [tree_qua_branch, svm_mima_branch, knn_sta_branch])
        my_pipe += PipelineElement("LogisticRegression", solver="lbfgs")

        json_transformer = JsonTransformer()
        pipe_json = json_transformer.create_json(my_pipe)
        my_pipe_reload = json_transformer.from_json(pipe_json)
        pipe_json_reload = pipe_json = json_transformer.create_json(
            my_pipe_reload)
        self.assertEqual(pipe_json, pipe_json_reload)
Example #4
0
    def test_classification_9(self):
        for original_hyperpipe in self.hyperpipes:
            pipe = original_hyperpipe.copy_me()

            # crazy everything
            pipe += PipelineElement("StandardScaler")
            pipe += PipelineElement(
                "SamplePairingClassification",
                {
                    "draw_limit": [100],
                    "generator": Categorical(["nearest_pair", "random_pair"]),
                },
                distance_metric="euclidean",
                test_disabled=True,
            )
            # setup pipeline branches with half of the features each
            # if both PCAs are disabled, features are simply concatenated and passed to the final estimator
            source1_branch = Branch("source1_features")
            # first half of features (for Boston Housing, same as indices=[0, 1, 2, 3, 4, 5]
            source1_branch += DataFilter(indices=np.arange(
                start=0, stop=int(np.floor(self.X_shape[1] / 2))))
            source1_branch += PipelineElement(
                "PCA",
                hyperparameters={"n_components": Categorical([None, 5])},
                test_disabled=True,
            )

            source2_branch = Branch("source2_features")
            # second half of features (for Boston Housing, same is indices=[6, 7, 8, 9, 10, 11, 12]
            source2_branch += DataFilter(indices=np.arange(
                start=int(np.floor(self.X_shape[1] /
                                   2)), stop=self.X_shape[1]))
            source2_branch += PipelineElement(
                "PCA",
                hyperparameters={"n_components": Categorical([None, 5])},
                test_disabled=True,
            )
            # setup source branches and stack their output (i.e. horizontal concatenation)
            pipe += Stack("source_stack",
                          elements=[source1_branch, source2_branch])
            # final estimator with stack output as features
            pipe += PipelineElement(
                "RandomForestClassifier",
                hyperparameters={
                    "min_samples_split":
                    FloatRange(start=0.05,
                               step=0.1,
                               stop=0.26,
                               range_type="range")
                },
            )

            self.run_hyperpipe(pipe, self.classification)
Example #5
0
    def __init__(self, name, nr_of_processes=1, output_img: bool = False):
        Branch.__init__(self, name)

        self._nr_of_processes = 1
        self.local_cluster = None
        self.client = None
        self.nr_of_processes = nr_of_processes
        self.output_img = output_img

        self.has_hyperparameters = True
        self.needs_y = False
        self.needs_covariates = True
        self.current_config = None
Example #6
0
    def test_branch_in_branch(self):
        """
        Test for deep Pipeline.
        """

        my_pipe = Hyperpipe(
            'basic_stacking',
            optimizer='grid_search',
            metrics=['accuracy', 'precision', 'recall'],
            best_config_metric='f1_score',
            outer_cv=KFold(n_splits=2),
            inner_cv=KFold(n_splits=3),
            verbosity=1,
            cache_folder="./cache/",
            output_settings=OutputSettings(project_folder='./tmp/'))

        # BRANCH WITH QUANTILTRANSFORMER AND DECISIONTREECLASSIFIER
        tree_qua_branch = Branch('tree_branch')
        tree_qua_branch += PipelineElement('QuantileTransformer')
        tree_qua_branch += PipelineElement(
            'DecisionTreeClassifier',
            {'min_samples_split': IntegerRange(2, 4)},
            criterion='gini')

        # BRANCH WITH MinMaxScaler AND DecisionTreeClassifier
        svm_mima_branch = Branch('svm_branch')
        svm_mima_branch += PipelineElement('MinMaxScaler')
        svm_mima_branch += PipelineElement(
            'SVC',
            {
                'kernel': ['rbf', 'linear'],  # Categorical(['rbf', 'linear']),
                'C': IntegerRange(0.01, 2.0)
            },
            gamma='auto')

        # BRANCH WITH StandardScaler AND KNeighborsClassifier
        knn_sta_branch = Branch('neighbour_branch')
        knn_sta_branch += PipelineElement('StandardScaler')
        knn_sta_branch += PipelineElement('KNeighborsClassifier')

        # voting = True to mean the result of every branch
        my_pipe += Stack('final_stack',
                         [tree_qua_branch, svm_mima_branch, knn_sta_branch])
        my_pipe += PipelineElement('LogisticRegression', solver='lbfgs')

        json_transformer = JsonTransformer()
        pipe_json = json_transformer.create_json(my_pipe)
        my_pipe_reload = json_transformer.from_json(pipe_json)
        pipe_json_reload = pipe_json = json_transformer.create_json(
            my_pipe_reload)
        self.assertEqual(pipe_json, pipe_json_reload)
Example #7
0
    def test_prepare_photon_pipeline(self):
        test_branch = Branch('my_test_branch')
        test_branch += PipelineElement('SimpleImputer')
        test_branch += Switch('my_crazy_switch_bitch')
        test_branch += Stack('my_stacking_stack')
        test_branch += PipelineElement('SVC')

        generated_pipe = test_branch.prepare_photon_pipe(test_branch.elements)

        self.assertEqual(len(generated_pipe.named_steps), 4)
        for idx, element in enumerate(test_branch.elements):
            self.assertIs(generated_pipe.named_steps[element.name], element)
            self.assertIs(generated_pipe.elements[idx][1],
                          test_branch.elements[idx])
Example #8
0
    def test_sanity_check_pipe(self):
        test_branch = Branch('my_test_branch')

        def callback_func(X, y, **kwargs):
            pass

        with self.assertRaises(Warning):
            my_callback = CallbackElement('final_element_callback',
                                          delegate_function=callback_func)
            test_branch += my_callback
            no_callback_pipe = test_branch.prepare_photon_pipe(
                test_branch.elements)
            test_branch.sanity_check_pipeline(no_callback_pipe)
            self.assertFalse(no_callback_pipe[-1] is not my_callback)
Example #9
0
    def test_copy_me(self):
        switch = Switch("my_copy_switch")
        switch += PipelineElement("StandardScaler")
        switch += PipelineElement("RobustScaler", test_disabled=True)

        stack = Stack("RandomStack")
        stack += PipelineElement("SVC")
        branch = Branch('Random_Branch')
        pca_hyperparameters = {'n_components': [5, 10]}
        branch += PipelineElement("PCA", hyperparameters=pca_hyperparameters)
        branch += PipelineElement("DecisionTreeClassifier")
        stack += branch

        photon_pipe = PhotonPipeline([("SimpleImputer", PipelineElement("SimpleImputer")),
                                      ("my_copy_switch", switch),
                                      ('RandomStack', stack),
                                      ('Callback1', CallbackElement('tmp_callback', np.mean)),
                                      ("PhotonVotingClassifier", PipelineElement("PhotonVotingClassifier"))])

        copy_of_the_pipe = photon_pipe.copy_me()

        self.assertEqual(photon_pipe.random_state, copy_of_the_pipe.random_state)
        self.assertTrue(len(copy_of_the_pipe.elements) == 5)
        self.assertTrue(copy_of_the_pipe.elements[2][1].name == "RandomStack")
        self.assertTrue(copy_of_the_pipe.named_steps["my_copy_switch"].elements[1].test_disabled)
        self.assertDictEqual(copy_of_the_pipe.elements[2][1].elements[1].elements[0].hyperparameters,
                             {"PCA__n_components": [5, 10]})
        self.assertTrue(isinstance(copy_of_the_pipe.elements[3][1], CallbackElement))
        self.assertTrue(copy_of_the_pipe.named_steps["tmp_callback"].delegate_function == np.mean)
Example #10
0
    def test_copy_me(self):
        branch = Branch('MyBranch', [self.scaler, self.pca])

        copy = branch.copy_me()
        self.assertEqual(branch.random_state, copy.random_state)
        self.assertDictEqual(elements_to_dict(copy), elements_to_dict(branch))

        copy = branch.copy_me()
        copy.elements[1].base_element.n_components = 3
        self.assertNotEqual(copy.elements[1].base_element.n_components,
                            branch.elements[1].base_element.n_components)

        fake_copy = branch
        fake_copy.elements[1].base_element.n_components = 3
        self.assertEqual(fake_copy.elements[1].base_element.n_components,
                         branch.elements[1].base_element.n_components)
Example #11
0
    def setup_crazy_pipe(self):
        # erase all, we need a complex and crazy task
        self.hyperpipe.elements = list()

        nmb_list = list()
        for i in range(5):
            nmb = ParallelBranch(name=str(i), nr_of_processes=i + 3)
            sp = PipelineElement(
                'PCA', hyperparameters={'n_components': IntegerRange(1, 50)})
            nmb += sp
            nmb_list.append(nmb)

        my_switch = Switch('disabling_test_switch')
        my_switch += nmb_list[0]
        my_switch += nmb_list[1]

        my_stack = Stack('stack_of_branches')
        for i in range(3):
            my_branch = Branch('branch_' + str(i + 2))
            my_branch += PipelineElement('StandardScaler')
            my_branch += nmb_list[i + 2]
            my_stack += my_branch

        self.hyperpipe.add(my_stack)
        self.hyperpipe.add(PipelineElement('StandardScaler'))
        self.hyperpipe.add(my_switch)
        self.hyperpipe.add(PipelineElement('SVC'))
        return nmb_list
Example #12
0
 def test_recursive_disabling(self):
     list_of_elements_to_detect = self.setup_crazy_pipe()
     self.hyperpipe._pipe = Branch.prepare_photon_pipe(
         list_of_elements_to_detect)
     Hyperpipe.disable_multiprocessing_recursively(self.hyperpipe._pipe)
     self.assertTrue(
         [i.nr_of_processes == 1 for i in list_of_elements_to_detect])
Example #13
0
 def test_ask_advanced(self):
     """
     Test advanced functionality of .ask()
     """
     branch = Branch("branch")
     branch += PipelineElement("PCA")
     branch += PipelineElement("SVC", {
         "C": [0.1, 1],
         "kernel": ["rbf", "sigmoid"]
     })
     pipe_switch = Switch(
         "switch",
         [
             PipelineElement("StandardScaler"),
             PipelineElement("MaxAbsScaler")
         ],
     )
     self.pipeline_elements = [
         PipelineElement("StandardScaler"),
         PipelineElement(
             "PCA",
             hyperparameters={"n_components": IntegerRange(5, 20)},
             test_disabled=True,
         ),
         pipe_switch,
         branch,
         Switch("Switch_in_switch", [branch, pipe_switch]),
     ]
     generated_elements = self.test_ask()
     self.assertIn("PCA__n_components", generated_elements)
     self.assertIn("Switch_in_switch__current_element", generated_elements)
     self.assertIn("branch__SVC__C", generated_elements)
     self.assertIn("branch__SVC__kernel", generated_elements)
     self.assertIn("switch__current_element", generated_elements)
Example #14
0
    def setup_crazy_pipe(self):
        # erase all, we need a complex and crazy task
        self.hyperpipe.elements = list()

        nmb_list = list()
        for i in range(5):
            nmb = NeuroBranch(name=str(i), nr_of_processes=i + 3)
            nmb += PipelineElement("SmoothImages")
            nmb_list.append(nmb)

        my_switch = Switch("disabling_test_switch")
        my_switch += nmb_list[0]
        my_switch += nmb_list[1]

        my_stack = Stack("stack_of_branches")
        for i in range(3):
            my_branch = Branch("branch_" + str(i + 2))
            my_branch += PipelineElement("StandardScaler")
            my_branch += nmb_list[i + 2]
            my_stack += my_branch

        self.hyperpipe.add(my_stack)
        self.hyperpipe.add(PipelineElement("StandardScaler"))
        self.hyperpipe.add(my_switch)
        self.hyperpipe.add(PipelineElement("SVC"))
        return nmb_list
Example #15
0
 def test_ask_advanced(self):
     """
     Test advanced functionality of .ask()
     """
     branch = Branch('branch')
     branch += PipelineElement('PCA')
     branch += PipelineElement('SVC', {
         'C': [0.1, 1],
         'kernel': ['rbf', 'sigmoid']
     })
     pipe_switch = Switch('switch', [
         PipelineElement("StandardScaler"),
         PipelineElement("MaxAbsScaler")
     ])
     self.pipeline_elements = [
         PipelineElement("StandardScaler"),
         PipelineElement(
             'PCA',
             hyperparameters={'n_components': IntegerRange(5, 20)},
             test_disabled=True), pipe_switch, branch,
         Switch('Switch_in_switch', [branch, pipe_switch])
     ]
     generated_elements = self.test_ask()
     self.assertIn("PCA__n_components", generated_elements)
     self.assertIn("Switch_in_switch__current_element", generated_elements)
     self.assertIn("branch__SVC__C", generated_elements)
     self.assertIn("branch__SVC__kernel", generated_elements)
     self.assertIn("switch__current_element", generated_elements)
Example #16
0
    def test_estimator_type(self):
        def callback(X, y=None):
            pass

        transformer_branch = Branch(
            'TransBranch',
            [PipelineElement('PCA'),
             PipelineElement('FastICA')])
        classifier_branch = Branch('ClassBranch', [PipelineElement('SVC')])
        regressor_branch = Branch('RegBranch', [PipelineElement('SVR')])
        callback_branch = Branch(
            'CallBranch',
            [PipelineElement('SVR'),
             CallbackElement('callback', callback)])

        self.assertEqual(transformer_branch._estimator_type, None)
        self.assertEqual(classifier_branch._estimator_type, 'classifier')
        self.assertEqual(regressor_branch._estimator_type, 'regressor')
        self.assertEqual(callback_branch._estimator_type, None)
Example #17
0
    def setUp(self):
        self.X, self.y = load_breast_cancer(True)
        self.scaler = PipelineElement("StandardScaler", {'with_mean': True})
        self.pca = PipelineElement('PCA', {'n_components': [1, 2]},
                                   test_disabled=True,
                                   random_state=3)
        self.tree = PipelineElement('DecisionTreeClassifier',
                                    {'min_samples_split': [2, 3, 4]},
                                    random_state=3)

        self.transformer_branch = Branch('MyBranch', [self.scaler, self.pca])
        self.transformer_branch_sklearn = SKPipeline([("SS", StandardScaler()),
                                                      ("PCA",
                                                       PCA(random_state=3))])
        self.estimator_branch = Branch('MyBranch',
                                       [self.scaler, self.pca, self.tree])
        self.estimator_branch_sklearn = SKPipeline([
            ("SS", StandardScaler()), ("PCA", PCA(random_state=3)),
            ("Tree", DecisionTreeClassifier(random_state=3))
        ])
Example #18
0
    def setUp(self):
        self.svc_pipe_element = PipelineElement('SVC', {'C': [0.1, 1], 'kernel': ['rbf', 'sigmoid']})
        self.lr_pipe_element = PipelineElement('DecisionTreeClassifier', {'min_samples_split': [2, 3, 4]})
        self.pipe_switch = Switch('switch', [self.svc_pipe_element, self.lr_pipe_element])

        self.branch = Branch('branch')
        self.branch += PipelineElement('PCA')
        self.branch += self.svc_pipe_element

        self.switch_in_switch = Switch('Switch_in_switch', [self.branch,
                                                            self.pipe_switch])
Example #19
0
    def test_set_random_state(self):
        # we handle all elements in one method that is inherited so we capture them all in this test
        random_state = 53
        my_branch = Branch("random_state_branch")
        my_branch += PipelineElement("StandardScaler")
        my_switch = Switch("transformer_Switch")
        my_switch += PipelineElement("LassoFeatureSelection")
        my_switch += PipelineElement("PCA")
        my_branch += my_switch
        my_stack = Stack("Estimator_Stack")
        my_stack += PipelineElement("SVR")
        my_stack += PipelineElement("Ridge")
        my_branch += my_stack
        my_branch += PipelineElement("ElasticNet")

        my_branch.random_state = random_state
        self.assertTrue(my_switch.elements[1].random_state == random_state)
        self.assertTrue(
            my_switch.elements[1].base_element.random_state == random_state)
        self.assertTrue(my_stack.elements[1].random_state == random_state)
        self.assertTrue(
            my_stack.elements[1].base_element.random_state == random_state)
Example #20
0
    def test_add(self):
        branch = Branch('MyBranch', [
            PipelineElement('PCA', {'n_components': [5]}),
            PipelineElement('FastICA')
        ])
        self.assertEqual(len(branch.elements), 2)
        self.assertDictEqual(branch._hyperparameters,
                             {'MyBranch__PCA__n_components': [5]})
        branch = Branch('MyBranch')
        branch += PipelineElement('PCA', {'n_components': [5]})
        branch += PipelineElement('FastICA')
        self.assertEqual(len(branch.elements), 2)
        self.assertDictEqual(branch._hyperparameters,
                             {'MyBranch__PCA__n_components': [5]})

        # add doubled item
        branch += PipelineElement('PCA', {'n_components': [10, 20]})
        self.assertEqual(branch.elements[-1].name, 'PCA2')
        self.assertDictEqual(
            branch.hyperparameters, {
                'MyBranch__PCA__n_components': [5],
                'MyBranch__PCA2__n_components': [10, 20]
            })
Example #21
0
 def test_recursive_cache_folder_propagation(self):
     list_of_elements = self.setup_crazy_pipe()
     self.hyperpipe._pipe = Branch.prepare_photon_pipe(self.hyperpipe.elements)
     self.hyperpipe.recursive_cache_folder_propagation(
         self.hyperpipe._pipe, self.cache_folder_path, "fold_id_123"
     )
     for i, nmbranch in enumerate(list_of_elements):
         if i > 1:
             start_folder = os.path.join(
                 self.cache_folder_path, "branch_" + nmbranch.name
             )
         else:
             start_folder = self.cache_folder_path
         expected_folder = os.path.join(start_folder, nmbranch.name)
         self.assertEqual(nmbranch.base_element.cache_folder, expected_folder)
Example #22
0
    def test_classification_8(self):
        for original_hyperpipe in self.hyperpipes:
            pipe = original_hyperpipe.copy_me()

            pipe += PipelineElement('StandardScaler')
            # setup pipeline branches with half of the features each
            # if both PCAs are disabled, features are simply concatenated and passed to the final estimator
            source1_branch = Branch('source1_features')
            # first half of features (for Boston Housing, same as indices=[0, 1, 2, 3, 4, 5]
            source1_branch += DataFilter(indices=np.arange(start=0, stop=int(np.floor(self.X_shape[1] / 2))))
            source1_branch += PipelineElement('ConfounderRemoval', {}, standardize_covariates=True, test_disabled=True,
                                              confounder_names=['cov1', 'cov2'])
            source1_branch += PipelineElement('PCA', hyperparameters={'n_components': Categorical([None, 5])},
                                              test_disabled=True)

            source2_branch = Branch('source2_features')
            # second half of features (for Boston Housing, same is indices=[6, 7, 8, 9, 10, 11, 12]
            source2_branch += DataFilter(indices=np.arange(start=int(np.floor(self.X_shape[1] / 2)), stop=self.X_shape[1]))
            source2_branch += PipelineElement('ConfounderRemoval', {}, standardize_covariates=True, test_disabled=True,
                                              confounder_names=['cov1', 'cov2'])
            source2_branch += PipelineElement('PCA', hyperparameters={'n_components': Categorical([None, 5])},
                                              test_disabled=True)

            # setup source branches and stack their output (i.e. horizontal concatenation)
            pipe += Stack('source_stack', elements=[source1_branch, source2_branch])

            # final estimator with stack output as features
            # setup estimator switch and add it to the pipe
            switch = Switch('estimator_switch')
            switch += PipelineElement('SVC', hyperparameters={'kernel': Categorical(['linear', 'rbf']),
                                                              'C': Categorical([.01, 1, 5])})
            switch += PipelineElement('RandomForestClassifier', hyperparameters={
                'min_samples_split': FloatRange(start=.05, step=.1, stop=.26, range_type='range')})
            pipe += switch

            self.run_hyperpipe(pipe, self.classification)
Example #23
0
    def setUp(self):
        self.svc_pipe_element = PipelineElement("SVC", {
            "C": [0.1, 1],
            "kernel": ["rbf", "sigmoid"]
        })
        self.lr_pipe_element = PipelineElement(
            "DecisionTreeClassifier", {"min_samples_split": [2, 3, 4]})
        self.pipe_switch = Switch(
            "switch", [self.svc_pipe_element, self.lr_pipe_element])

        self.branch = Branch("branch")
        self.branch += PipelineElement("PCA")
        self.branch += self.svc_pipe_element

        self.switch_in_switch = Switch("Switch_in_switch",
                                       [self.branch, self.pipe_switch])
Example #24
0
    def setUp(self):
        self.X, self.y = load_breast_cancer(True)

        self.pca = PipelineElement('PCA', {'n_components': [5, 10]})
        self.scaler = PipelineElement('StandardScaler', {'with_mean': [True]})
        self.svc = PipelineElement('SVC', {'C': [1, 2]})
        self.tree = PipelineElement('DecisionTreeClassifier',
                                    {'min_samples_leaf': [3, 5]})

        self.transformer_branch_1 = Branch('TransBranch1',
                                           [self.pca.copy_me()])
        self.transformer_branch_2 = Branch('TransBranch2',
                                           [self.scaler.copy_me()])

        self.estimator_branch_1 = Branch('EstBranch1', [self.svc.copy_me()])
        self.estimator_branch_2 = Branch('EstBranch2', [self.tree.copy_me()])

        self.transformer_stack = Stack(
            'TransformerStack',
            [self.pca.copy_me(), self.scaler.copy_me()])
        self.estimator_stack = Stack(
            'EstimatorStack',
            [self.svc.copy_me(), self.tree.copy_me()])
        self.transformer_branch_stack = Stack('TransBranchStack', [
            self.transformer_branch_1.copy_me(),
            self.transformer_branch_2.copy_me()
        ])
        self.estimator_branch_stack = Stack('EstBranchStack', [
            self.estimator_branch_1.copy_me(),
            self.estimator_branch_2.copy_me()
        ])

        self.stacks = [
            ([self.pca, self.scaler], self.transformer_stack),
            ([self.svc, self.tree], self.estimator_stack),
            ([self.transformer_branch_1,
              self.transformer_branch_2], self.transformer_branch_stack),
            ([self.estimator_branch_1,
              self.estimator_branch_2], self.estimator_branch_stack)
        ]
Example #25
0
    def test_add(self):
        stack = Stack('MyStack', [
            PipelineElement('PCA', {'n_components': [5]}),
            PipelineElement('FastICA')
        ])
        self.assertEqual(len(stack.elements), 2)
        self.assertDictEqual(stack._hyperparameters,
                             {'MyStack__PCA__n_components': [5]})
        stack = Stack('MyStack')
        stack += PipelineElement('PCA', {'n_components': [5]})
        stack += PipelineElement('FastICA')
        self.assertEqual(len(stack.elements), 2)
        self.assertDictEqual(stack._hyperparameters,
                             {'MyStack__PCA__n_components': [5]})

        def callback(X, y=None):
            pass

        stack = Stack('MyStack', [
            PipelineElement('PCA'),
            CallbackElement('MyCallback', callback),
            Switch('MySwitch',
                   [PipelineElement('PCA'),
                    PipelineElement('FastICA')]),
            Branch('MyBranch', [PipelineElement('PCA')])
        ])
        self.assertEqual(len(stack.elements), 4)

        # test doubled item
        with self.assertRaises(ValueError):
            stack += stack.elements[0]

        stack += PipelineElement('PCA', {'n_components': [10, 20]})
        self.assertEqual(stack.elements[-1].name, 'PCA2')
        self.assertDictEqual(
            stack.hyperparameters, {
                'MyStack__MySwitch__current_element': [(0, 0), (1, 0)],
                'MyStack__PCA2__n_components': [10, 20]
            })
Example #26
0
neuro_branch += PipelineElement(
    "BrainAtlas",
    hyperparameters={},
    rois=["Hippocampus_L", "Hippocampus_R", "Amygdala_L", "Amygdala_R"],
    atlas_name="AAL",
    extract_mode="vec",
    batch_size=20,
)

# finally, add your neuro branch to your hyperpipe
neuro_branch += CallbackElement("NeuroCallback", my_monitor)
my_pipe += neuro_branch
# my_pipe += CallbackElement('NeuroCallback', my_monitor)

# now, add standard ML algorithms to your liking
feature_engineering = Branch("FeatureEngineering")
feature_engineering += PipelineElement("StandardScaler")


my_pipe += feature_engineering
my_pipe += CallbackElement("FECallback", my_monitor)
my_pipe += PipelineElement(
    "SVR", hyperparameters={"kernel": Categorical(["rbf", "linear"])}, gamma="scale"
)

# NOW TRAIN YOUR PIPELINE
start_time = time.time()
my_pipe.fit(X, y)
elapsed_time = time.time() - start_time
print(time.strftime("%H:%M:%S", time.gmtime(elapsed_time)))
Example #27
0
from photonai.base import Hyperpipe, PipelineElement, Stack, Branch, OutputSettings
from photonai.optimization import IntegerRange, Categorical

X, y = load_breast_cancer(True)

my_pipe = Hyperpipe('basic_stacking',
                    optimizer='grid_search',
                    metrics=['accuracy', 'precision', 'recall'],
                    best_config_metric='f1_score',
                    outer_cv=KFold(n_splits=3),
                    inner_cv=KFold(n_splits=10),
                    verbosity=1,
                    output_settings=OutputSettings(project_folder='./tmp/'))

# BRANCH WITH QUANTILTRANSFORMER AND DECISIONTREECLASSIFIER
tree_qua_branch = Branch('tree_branch')
tree_qua_branch += PipelineElement('QuantileTransformer')
tree_qua_branch += PipelineElement('DecisionTreeClassifier',
                                   {'min_samples_split': IntegerRange(2, 4)},
                                   criterion='gini')

# BRANCH WITH MinMaxScaler AND DecisionTreeClassifier
svm_mima_branch = Branch('svm_branch')
svm_mima_branch += PipelineElement('MinMaxScaler')
svm_mima_branch += PipelineElement('SVC', {
    'kernel': Categorical(['rbf', 'linear']),
    'C': IntegerRange(0.01, 2.0)
},
                                   gamma='auto')

# BRANCH WITH StandardScaler AND KNeighborsClassifier
Example #28
0
class StackTests(unittest.TestCase):
    def setUp(self):
        self.X, self.y = load_breast_cancer(True)

        self.pca = PipelineElement('PCA', {'n_components': [5, 10]})
        self.scaler = PipelineElement('StandardScaler', {'with_mean': [True]})
        self.svc = PipelineElement('SVC', {'C': [1, 2]})
        self.tree = PipelineElement('DecisionTreeClassifier',
                                    {'min_samples_leaf': [3, 5]})

        self.transformer_branch_1 = Branch('TransBranch1',
                                           [self.pca.copy_me()])
        self.transformer_branch_2 = Branch('TransBranch2',
                                           [self.scaler.copy_me()])

        self.estimator_branch_1 = Branch('EstBranch1', [self.svc.copy_me()])
        self.estimator_branch_2 = Branch('EstBranch2', [self.tree.copy_me()])

        self.transformer_stack = Stack(
            'TransformerStack',
            [self.pca.copy_me(), self.scaler.copy_me()])
        self.estimator_stack = Stack(
            'EstimatorStack',
            [self.svc.copy_me(), self.tree.copy_me()])
        self.transformer_branch_stack = Stack('TransBranchStack', [
            self.transformer_branch_1.copy_me(),
            self.transformer_branch_2.copy_me()
        ])
        self.estimator_branch_stack = Stack('EstBranchStack', [
            self.estimator_branch_1.copy_me(),
            self.estimator_branch_2.copy_me()
        ])

        self.stacks = [
            ([self.pca, self.scaler], self.transformer_stack),
            ([self.svc, self.tree], self.estimator_stack),
            ([self.transformer_branch_1,
              self.transformer_branch_2], self.transformer_branch_stack),
            ([self.estimator_branch_1,
              self.estimator_branch_2], self.estimator_branch_stack)
        ]

    def test_copy_me(self):
        for stack in self.stacks:
            stack = stack[1]
            copy = stack.copy_me()
            self.assertEqual(stack.random_state, copy.random_state)
            self.assertFalse(
                stack.elements[0].__dict__ == copy.elements[0].__dict__)
            self.assertDictEqual(elements_to_dict(stack),
                                 elements_to_dict(copy))

    def test_horizontal_stacking(self):
        for stack in self.stacks:
            element_1 = stack[0][0]
            element_2 = stack[0][1]
            stack = stack[1]

            # fit elements
            Xt_1 = element_1.fit(self.X, self.y).transform(self.X, self.y)
            Xt_2 = element_2.fit(self.X, self.y).transform(self.X, self.y)

            Xt = stack.fit(self.X, self.y).transform(self.X, self.y)

            # output of transform() changes depending on whether it is an estimator stack or a transformer stack
            if isinstance(Xt, tuple):
                Xt = Xt[0]
                Xt_1 = Xt_1[0]
                Xt_2 = Xt_2[0]

            if len(Xt_1.shape) == 1:
                Xt_1 = np.reshape(Xt_1, (-1, 1))
                Xt_2 = np.reshape(Xt_2, (-1, 1))

            self.assertEqual(Xt.shape[1], Xt_1.shape[-1] + Xt_2.shape[-1])

    def recursive_assertion(self, element_a, element_b):
        for key in element_a.keys():
            if isinstance(element_a[key], np.ndarray):
                np.testing.assert_array_equal(element_a[key], element_b[key])
            elif isinstance(element_a[key], dict):
                self.recursive_assertion(element_a[key], element_b[key])
            else:
                self.assertEqual(element_a[key], element_b[key])

    def test_fit(self):
        for elements, stack in [([self.pca,
                                  self.scaler], self.transformer_stack),
                                ([self.svc, self.tree], self.estimator_stack)]:
            np.random.seed(42)
            stack = stack.fit(self.X, self.y)
            np.random.seed(42)
            for i, element in enumerate(elements):
                element = element.fit(self.X, self.y)
                element_dict = elements_to_dict(element)
                stack_dict = elements_to_dict(stack.elements[i])
                self.recursive_assertion(element_dict, stack_dict)

    def test_transform(self):
        for elements, stack in self.stacks:
            np.random.seed(42)
            Xt_stack, _, _ = stack.fit(self.X, self.y).transform(self.X)
            np.random.seed(42)
            Xt_elements = None
            for i, element in enumerate(elements):
                Xt_element, _, _ = element.fit(self.X,
                                               self.y).transform(self.X)
                Xt_elements = PhotonDataHelper.stack_data_horizontally(
                    Xt_elements, Xt_element)
            np.testing.assert_array_equal(Xt_stack, Xt_elements)

    def test_predict(self):
        for elements, stack in [
            ([self.svc, self.tree], self.estimator_stack),
            ([self.estimator_branch_1,
              self.estimator_branch_2], self.estimator_branch_stack)
        ]:
            np.random.seed(42)
            stack = stack.fit(self.X, self.y)
            yt_stack = stack.predict(self.X)
            np.random.seed(42)
            Xt_elements = None
            for i, element in enumerate(elements):
                Xt_element = element.fit(self.X, self.y).predict(self.X)
                Xt_elements = PhotonDataHelper.stack_data_horizontally(
                    Xt_elements, Xt_element)
            np.testing.assert_array_equal(yt_stack, Xt_elements)

    def test_predict_proba(self):
        for elements, stack in [
            ([self.svc, self.tree], self.estimator_stack),
            ([self.estimator_branch_1,
              self.estimator_branch_2], self.estimator_branch_stack)
        ]:
            np.random.seed(42)
            stack = stack.fit(self.X, self.y)
            yt_stack = stack.predict_proba(self.X)
            np.random.seed(42)
            Xt_elements = None
            for i, element in enumerate(elements):
                Xt_element = element.fit(self.X, self.y).predict_proba(self.X)
                if Xt_element is None:
                    Xt_element = element.fit(self.X, self.y).predict(self.X)
                Xt_elements = PhotonDataHelper.stack_data_horizontally(
                    Xt_elements, Xt_element)
            np.testing.assert_array_equal(yt_stack, Xt_elements)

    def test_inverse_transform(self):
        with self.assertRaises(NotImplementedError):
            self.stacks[0][1].fit(self.X, self.y).inverse_transform(self.X)

    def test_set_params(self):
        trans_config = {
            'PCA__n_components': 2,
            'PCA__disabled': True,
            'StandardScaler__with_mean': True
        }
        est_config = {
            'SVC__C': 3,
            'DecisionTreeClassifier__min_samples_leaf': 1
        }

        # transformer stack
        self.transformer_stack.set_params(**trans_config)
        self.assertEqual(
            self.transformer_stack.elements[0].base_element.n_components, 2)
        self.assertEqual(self.transformer_stack.elements[0].disabled, True)
        self.assertEqual(
            self.transformer_stack.elements[1].base_element.with_mean, True)

        # estimator stack
        self.estimator_stack.set_params(**est_config)
        self.assertEqual(self.estimator_stack.elements[0].base_element.C, 3)
        self.assertEqual(
            self.estimator_stack.elements[1].base_element.min_samples_leaf, 1)

        with self.assertRaises(ValueError):
            self.estimator_stack.set_params(**{'any_weird_param': 1})

        with self.assertRaises(ValueError):
            self.transformer_stack.set_params(**{'any_weird_param': 1})

    def test_add(self):
        stack = Stack('MyStack', [
            PipelineElement('PCA', {'n_components': [5]}),
            PipelineElement('FastICA')
        ])
        self.assertEqual(len(stack.elements), 2)
        self.assertDictEqual(stack._hyperparameters,
                             {'MyStack__PCA__n_components': [5]})
        stack = Stack('MyStack')
        stack += PipelineElement('PCA', {'n_components': [5]})
        stack += PipelineElement('FastICA')
        self.assertEqual(len(stack.elements), 2)
        self.assertDictEqual(stack._hyperparameters,
                             {'MyStack__PCA__n_components': [5]})

        def callback(X, y=None):
            pass

        stack = Stack('MyStack', [
            PipelineElement('PCA'),
            CallbackElement('MyCallback', callback),
            Switch('MySwitch',
                   [PipelineElement('PCA'),
                    PipelineElement('FastICA')]),
            Branch('MyBranch', [PipelineElement('PCA')])
        ])
        self.assertEqual(len(stack.elements), 4)

        # test doubled item
        with self.assertRaises(ValueError):
            stack += stack.elements[0]

        stack += PipelineElement('PCA', {'n_components': [10, 20]})
        self.assertEqual(stack.elements[-1].name, 'PCA2')
        self.assertDictEqual(
            stack.hyperparameters, {
                'MyStack__MySwitch__current_element': [(0, 0), (1, 0)],
                'MyStack__PCA2__n_components': [10, 20]
            })

    def test_feature_importances(self):
        # single item
        self.estimator_stack.fit(self.X, self.y)
        self.assertIsNone(self.estimator_stack.feature_importances_)

        self.estimator_branch_stack.fit(self.X, self.y)
        self.assertIsNone(self.estimator_branch_stack.feature_importances_)

    def test_use_probabilities(self):
        self.estimator_stack.use_probabilities = True
        self.estimator_stack.fit(self.X, self.y)
        probas = self.estimator_stack.predict(self.X)
        self.assertEqual(probas.shape[1], 3)

        self.estimator_stack.use_probabilities = False
        self.estimator_stack.fit(self.X, self.y)
        preds = self.estimator_stack.predict(self.X)
        self.assertEqual(preds.shape[1], 2)
        probas = self.estimator_stack.predict_proba(self.X)
        self.assertEqual(probas.shape[1], 3)
Example #29
0
class SwitchTests(unittest.TestCase):
    def setUp(self):
        self.X, self.y = load_breast_cancer(True)
        self.svc = PipelineElement('SVC', {
            'C': [0.1, 1],
            'kernel': ['rbf', 'sigmoid']
        })
        self.tree = PipelineElement('DecisionTreeClassifier',
                                    {'min_samples_split': [2, 3, 4]})
        self.gpc = PipelineElement('GaussianProcessClassifier')
        self.pca = PipelineElement('PCA')

        self.estimator_branch = Branch('estimator_branch',
                                       [self.tree.copy_me()])
        self.transformer_branch = Branch('transformer_branch',
                                         [self.pca.copy_me()])

        self.estimator_switch = Switch(
            'estimator_switch',
            [self.svc.copy_me(),
             self.tree.copy_me(),
             self.gpc.copy_me()])
        self.estimator_switch_with_branch = Switch(
            'estimator_switch_with_branch',
            [self.tree.copy_me(),
             self.estimator_branch.copy_me()])
        self.transformer_switch_with_branch = Switch(
            'transformer_switch_with_branch',
            [self.pca.copy_me(),
             self.transformer_branch.copy_me()])
        self.switch_in_switch = Switch('Switch_in_switch', [
            self.transformer_branch.copy_me(),
            self.transformer_switch_with_branch.copy_me()
        ])

    def test_init(self):
        self.assertEqual(self.estimator_switch.name, 'estimator_switch')

    def test_hyperparams(self):
        # assert number of different configs to test
        # each config combi for each element: 4 for SVC and 3 for logistic regression = 7
        self.assertEqual(
            len(self.estimator_switch.pipeline_element_configurations), 3)
        self.assertEqual(
            len(self.estimator_switch.pipeline_element_configurations[0]), 4)
        self.assertEqual(
            len(self.estimator_switch.pipeline_element_configurations[1]), 3)

        # hyperparameters
        self.assertDictEqual(
            self.estimator_switch.hyperparameters, {
                'estimator_switch__current_element': [(0, 0), (0, 1), (0, 2),
                                                      (0, 3), (1, 0), (1, 1),
                                                      (1, 2), (2, 0)]
            })

        # config grid
        self.assertListEqual(self.estimator_switch.generate_config_grid(), [{
            'estimator_switch__current_element': (0, 0)
        }, {
            'estimator_switch__current_element': (0, 1)
        }, {
            'estimator_switch__current_element': (0, 2)
        }, {
            'estimator_switch__current_element': (0, 3)
        }, {
            'estimator_switch__current_element': (1, 0)
        }, {
            'estimator_switch__current_element': (1, 1)
        }, {
            'estimator_switch__current_element': (1, 2)
        }, {
            'estimator_switch__current_element': (2, 0)
        }])

    def test_set_params(self):

        # test for grid search
        false_config = {'current_element': 1}
        with self.assertRaises(ValueError):
            self.estimator_switch.set_params(**false_config)

        correct_config = {'current_element': (0, 1)}
        self.estimator_switch.set_params(**correct_config)
        self.assertEqual(self.estimator_switch.base_element.base_element.C,
                         0.1)
        self.assertEqual(
            self.estimator_switch.base_element.base_element.kernel, 'sigmoid')

        # test for other optimizers
        smac_config = {'SVC__C': 2, 'SVC__kernel': 'rbf'}
        self.estimator_switch.set_params(**smac_config)
        self.assertEqual(self.estimator_switch.base_element.base_element.C, 2)
        self.assertEqual(
            self.estimator_switch.base_element.base_element.kernel, 'rbf')

    def test_fit(self):
        np.random.seed(42)
        self.estimator_switch.set_params(**{'current_element': (1, 0)})
        self.estimator_switch.fit(self.X, self.y)
        np.random.seed(42)
        self.tree.set_params(**{'min_samples_split': 2})
        self.tree.fit(self.X, self.y)
        np.testing.assert_array_equal(
            self.tree.base_element.feature_importances_,
            self.estimator_switch.base_element.feature_importances_)

    def test_transform(self):
        self.transformer_switch_with_branch.set_params(
            **{'current_element': (0, 0)})
        self.transformer_switch_with_branch.fit(self.X, self.y)
        self.pca.fit(self.X, self.y)

        switch_Xt, _, _ = self.transformer_switch_with_branch.transform(self.X)
        pca_Xt, _, _ = self.pca.transform(self.X)
        self.assertTrue(np.array_equal(pca_Xt, switch_Xt))

    def test_predict(self):
        self.estimator_switch.set_params(**{'current_element': (1, 0)})
        np.random.seed(42)
        self.estimator_switch.fit(self.X, self.y)
        self.tree.set_params(**{'min_samples_split': 2})
        np.random.seed(42)
        self.tree.fit(self.X, self.y)

        switch_preds = self.estimator_switch.predict(self.X)
        tree_preds = self.tree.predict(self.X)
        self.assertTrue(np.array_equal(switch_preds, tree_preds))

    def test_predict_proba(self):
        gpc = PipelineElement('GaussianProcessClassifier')
        svc = PipelineElement('SVC')
        switch = Switch('EstimatorSwitch', [gpc, svc])
        switch.set_params(**{'current_element': (0, 0)})
        np.random.seed(42)
        switch_probas = switch.fit(self.X, self.y).predict_proba(self.X)
        np.random.seed(42)
        gpr_probas = self.gpc.fit(self.X, self.y).predict_proba(self.X)
        self.assertTrue(np.array_equal(switch_probas, gpr_probas))

    def test_inverse_transform(self):
        self.transformer_switch_with_branch.set_params(
            **{'current_element': (0, 0)})
        self.transformer_switch_with_branch.fit(self.X, self.y)
        self.pca.fit(self.X, self.y)
        Xt_pca, _, _ = self.pca.transform(self.X)
        Xt_switch, _, _ = self.transformer_switch_with_branch.transform(self.X)
        X_pca, _, _ = self.pca.inverse_transform(Xt_pca)
        X_switch, _, _ = self.transformer_switch_with_branch.inverse_transform(
            Xt_switch)

        self.assertTrue(np.array_equal(Xt_pca, Xt_switch))
        self.assertTrue(np.array_equal(X_pca, X_switch))
        np.testing.assert_almost_equal(X_switch, self.X)

    def test_base_element(self):
        switch = Switch('switch', [self.svc, self.tree])
        switch.set_params(**{'current_element': (1, 1)})
        self.assertIs(switch.base_element, self.tree)
        self.assertIs(switch.base_element.base_element, self.tree.base_element)

        # other optimizer
        switch.set_params(**{'DecisionTreeClassifier__min_samples_split': 2})
        self.assertIs(switch.base_element, self.tree)
        self.assertIs(switch.base_element.base_element, self.tree.base_element)

    def test_copy_me(self):
        switches = [
            self.estimator_switch, self.estimator_switch_with_branch,
            self.transformer_switch_with_branch, self.switch_in_switch
        ]

        for switch in switches:
            copy = switch.copy_me()

            self.assertEqual(switch.random_state, copy.random_state)

            for i, element in enumerate(copy.elements):
                self.assertNotEqual(copy.elements[i], switch.elements[i])

            switch = elements_to_dict(switch)
            copy = elements_to_dict(copy)

            self.assertDictEqual(copy, switch)

    def test_estimator_type(self):
        pca = PipelineElement('PCA')
        ica = PipelineElement('FastICA')
        svc = PipelineElement('SVC')
        svr = PipelineElement('SVR')
        tree_class = PipelineElement('DecisionTreeClassifier')
        tree_reg = PipelineElement('DecisionTreeRegressor')

        switch = Switch('MySwitch', [pca, svr])
        with self.assertRaises(NotImplementedError):
            est_type = switch._estimator_type

        switch = Switch('MySwitch', [svc, svr])
        with self.assertRaises(NotImplementedError):
            est_type = switch._estimator_type

        switch = Switch('MySwitch', [pca, ica])
        self.assertEqual(switch._estimator_type, None)

        switch = Switch('MySwitch', [tree_class, svc])
        self.assertEqual(switch._estimator_type, 'classifier')

        switch = Switch('MySwitch', [tree_reg, svr])
        self.assertEqual(switch._estimator_type, 'regressor')

        self.assertEqual(self.estimator_switch._estimator_type, 'classifier')
        self.assertEqual(self.estimator_switch_with_branch._estimator_type,
                         'classifier')
        self.assertEqual(self.transformer_switch_with_branch._estimator_type,
                         None)
        self.assertEqual(self.switch_in_switch._estimator_type, None)

    def test_add(self):
        self.assertEqual(len(self.estimator_switch.elements), 3)
        self.assertEqual(len(self.switch_in_switch.elements), 2)
        self.assertEqual(len(self.transformer_switch_with_branch.elements), 2)

        self.assertEqual(
            list(self.estimator_switch.elements_dict.keys()),
            ['SVC', 'DecisionTreeClassifier', 'GaussianProcessClassifier'])
        self.assertEqual(
            list(self.switch_in_switch.elements_dict.keys()),
            ['transformer_branch', 'transformer_switch_with_branch'])

        switch = Switch('MySwitch',
                        [PipelineElement('PCA'),
                         PipelineElement('FastICA')])
        switch = Switch('MySwitch2')
        switch += PipelineElement('PCA')
        switch += PipelineElement('FastICA')

        # test doubled names
        with self.assertRaises(ValueError):
            self.estimator_switch += self.estimator_switch.elements[0]
        self.estimator_switch += PipelineElement("SVC")
        self.assertEqual(self.estimator_switch.elements[-1].name, "SVC2")
        self.estimator_switch += PipelineElement(
            "SVC", hyperparameters={'kernel': ['polynomial', 'sigmoid']})
        self.assertEqual(self.estimator_switch.elements[-1].name, "SVC3")
        self.estimator_switch += PipelineElement("SVR")
        self.assertEqual(self.estimator_switch.elements[-1].name, "SVR")
        self.estimator_switch += PipelineElement("SVC")
        self.assertEqual(self.estimator_switch.elements[-1].name, "SVC4")

        # check that hyperparameters are renamed respectively
        self.assertEqual(
            self.estimator_switch.pipeline_element_configurations[4][0]
            ["SVC3__kernel"], 'polynomial')

    def test_feature_importances(self):

        self.estimator_switch.set_params(**{'current_element': (1, 0)})
        self.estimator_switch.fit(self.X, self.y)
        self.assertTrue(
            len(self.estimator_switch.feature_importances_) == self.X.shape[1])

        self.estimator_switch_with_branch.set_params(
            **{'current_element': (1, 0)})
        self.estimator_switch_with_branch.fit(self.X, self.y)
        self.assertTrue(
            len(self.estimator_switch_with_branch.feature_importances_) ==
            self.X.shape[1])

        self.estimator_switch.set_params(**{'current_element': (2, 0)})
        self.estimator_switch.fit(self.X, self.y)
        self.assertIsNone(self.estimator_branch.feature_importances_)

        self.switch_in_switch.set_params(**{'current_element': (1, 0)})
        self.switch_in_switch.fit(self.X, self.y)
        self.assertIsNone(self.switch_in_switch.feature_importances_)
        self.estimator_switch.set_params(**{'current_element': (1, 0)})
        self.switch_in_switch.fit(self.X, self.y)
        self.assertIsNone(self.switch_in_switch.feature_importances_)
Example #30
0
class BranchTests(unittest.TestCase):
    def setUp(self):
        self.X, self.y = load_breast_cancer(True)
        self.scaler = PipelineElement("StandardScaler", {'with_mean': True})
        self.pca = PipelineElement('PCA', {'n_components': [1, 2]},
                                   test_disabled=True,
                                   random_state=3)
        self.tree = PipelineElement('DecisionTreeClassifier',
                                    {'min_samples_split': [2, 3, 4]},
                                    random_state=3)

        self.transformer_branch = Branch('MyBranch', [self.scaler, self.pca])
        self.transformer_branch_sklearn = SKPipeline([("SS", StandardScaler()),
                                                      ("PCA",
                                                       PCA(random_state=3))])
        self.estimator_branch = Branch('MyBranch',
                                       [self.scaler, self.pca, self.tree])
        self.estimator_branch_sklearn = SKPipeline([
            ("SS", StandardScaler()), ("PCA", PCA(random_state=3)),
            ("Tree", DecisionTreeClassifier(random_state=3))
        ])

    def test_fit(self):
        self.estimator_branch_sklearn.fit(self.X, self.y)
        sk_pred = self.estimator_branch_sklearn.predict(self.X)

        self.estimator_branch.fit(self.X, self.y)
        branch_pred = self.estimator_branch.predict(self.X)

        self.assertTrue(np.array_equal(sk_pred, branch_pred))

    def test_transform(self):
        Xt, _, _ = self.transformer_branch.fit(self.X,
                                               self.y).transform(self.X)
        Xt_sklearn = self.transformer_branch_sklearn.fit(
            self.X, self.y).transform(self.X)
        self.assertTrue(np.array_equal(Xt, Xt_sklearn))

    def test_predict(self):
        y_pred = self.estimator_branch.fit(self.X, self.y).predict(self.X)
        y_pred_sklearn = self.estimator_branch_sklearn.fit(
            self.X, self.y).predict(self.X)
        np.testing.assert_array_equal(y_pred, y_pred_sklearn)

    def test_predict_proba(self):
        proba = self.estimator_branch.fit(self.X, self.y).predict_proba(self.X)
        proba_sklearn = self.estimator_branch_sklearn.fit(
            self.X, self.y).predict_proba(self.X)
        np.testing.assert_array_equal(proba, proba_sklearn)

    def test_inverse_transform(self):
        self.estimator_branch.fit(self.X, self.y)
        feature_importances = self.estimator_branch.elements[
            -1].base_element.feature_importances_
        Xt, _, _ = self.estimator_branch.inverse_transform(feature_importances)
        self.assertEqual(self.X.shape[1], Xt.shape[0])

    def test_no_y_transformers(self):
        stacking_element = Stack("forbidden_stack")
        my_dummy = PipelineElement.create(
            "dummy", DummyNeedsCovariatesAndYTransformer(), {})

        with self.assertRaises(NotImplementedError):
            stacking_element += my_dummy

    def test_copy_me(self):
        branch = Branch('MyBranch', [self.scaler, self.pca])

        copy = branch.copy_me()
        self.assertEqual(branch.random_state, copy.random_state)
        self.assertDictEqual(elements_to_dict(copy), elements_to_dict(branch))

        copy = branch.copy_me()
        copy.elements[1].base_element.n_components = 3
        self.assertNotEqual(copy.elements[1].base_element.n_components,
                            branch.elements[1].base_element.n_components)

        fake_copy = branch
        fake_copy.elements[1].base_element.n_components = 3
        self.assertEqual(fake_copy.elements[1].base_element.n_components,
                         branch.elements[1].base_element.n_components)

    def test_prepare_photon_pipeline(self):
        test_branch = Branch('my_test_branch')
        test_branch += PipelineElement('SimpleImputer')
        test_branch += Switch('my_crazy_switch_bitch')
        test_branch += Stack('my_stacking_stack')
        test_branch += PipelineElement('SVC')

        generated_pipe = test_branch.prepare_photon_pipe(test_branch.elements)

        self.assertEqual(len(generated_pipe.named_steps), 4)
        for idx, element in enumerate(test_branch.elements):
            self.assertIs(generated_pipe.named_steps[element.name], element)
            self.assertIs(generated_pipe.elements[idx][1],
                          test_branch.elements[idx])

    def test_sanity_check_pipe(self):
        test_branch = Branch('my_test_branch')

        def callback_func(X, y, **kwargs):
            pass

        with self.assertRaises(Warning):
            my_callback = CallbackElement('final_element_callback',
                                          delegate_function=callback_func)
            test_branch += my_callback
            no_callback_pipe = test_branch.prepare_photon_pipe(
                test_branch.elements)
            test_branch.sanity_check_pipeline(no_callback_pipe)
            self.assertFalse(no_callback_pipe[-1] is not my_callback)

    def test_prepare_pipeline(self):
        self.assertEqual(len(self.transformer_branch.elements), 2)
        config_grid = {
            'MyBranch__PCA__n_components': [1, 2],
            'MyBranch__PCA__disabled': [False, True],
            'MyBranch__StandardScaler__with_mean': True
        }
        self.assertDictEqual(config_grid,
                             self.transformer_branch._hyperparameters)

    def test_set_params(self):
        config = {
            'PCA__n_components': 2,
            'PCA__disabled': True,
            'StandardScaler__with_mean': True
        }
        self.transformer_branch.set_params(**config)
        self.assertTrue(
            self.transformer_branch.base_element.elements[1][1].disabled)
        self.assertEqual(
            self.transformer_branch.base_element.elements[1]
            [1].base_element.n_components, 2)
        self.assertEqual(
            self.transformer_branch.base_element.elements[0]
            [1].base_element.with_mean, True)

        with self.assertRaises(ValueError):
            self.transformer_branch.set_params(**{'any_weird_param': 1})

    def test_estimator_type(self):
        def callback(X, y=None):
            pass

        transformer_branch = Branch(
            'TransBranch',
            [PipelineElement('PCA'),
             PipelineElement('FastICA')])
        classifier_branch = Branch('ClassBranch', [PipelineElement('SVC')])
        regressor_branch = Branch('RegBranch', [PipelineElement('SVR')])
        callback_branch = Branch(
            'CallBranch',
            [PipelineElement('SVR'),
             CallbackElement('callback', callback)])

        self.assertEqual(transformer_branch._estimator_type, None)
        self.assertEqual(classifier_branch._estimator_type, 'classifier')
        self.assertEqual(regressor_branch._estimator_type, 'regressor')
        self.assertEqual(callback_branch._estimator_type, None)

    def test_add(self):
        branch = Branch('MyBranch', [
            PipelineElement('PCA', {'n_components': [5]}),
            PipelineElement('FastICA')
        ])
        self.assertEqual(len(branch.elements), 2)
        self.assertDictEqual(branch._hyperparameters,
                             {'MyBranch__PCA__n_components': [5]})
        branch = Branch('MyBranch')
        branch += PipelineElement('PCA', {'n_components': [5]})
        branch += PipelineElement('FastICA')
        self.assertEqual(len(branch.elements), 2)
        self.assertDictEqual(branch._hyperparameters,
                             {'MyBranch__PCA__n_components': [5]})

        # add doubled item
        branch += PipelineElement('PCA', {'n_components': [10, 20]})
        self.assertEqual(branch.elements[-1].name, 'PCA2')
        self.assertDictEqual(
            branch.hyperparameters, {
                'MyBranch__PCA__n_components': [5],
                'MyBranch__PCA2__n_components': [10, 20]
            })

    def test_feature_importances(self):

        self.estimator_branch.fit(self.X, self.y)
        self.assertTrue(
            len(self.estimator_branch.feature_importances_) == self.X.shape[1])

        self.estimator_branch.elements[-1] = PipelineElement(
            "GaussianProcessClassifier")
        self.estimator_branch.fit(self.X, self.y)
        self.assertIsNone(self.estimator_branch.feature_importances_)

        self.transformer_branch.fit(self.X, self.y)
        self.assertIsNone(self.transformer_branch.feature_importances_)