def test_anisocado_model_centered(anisocado_model):

    data = anisocado_model.render()
    actual = centroid_quadratic(data)
    expected = center_of_image(data)

    assert np.all(np.abs(np.array(actual) - np.array(expected)) < 1e-8)
def test_anisocado_psf_even(psf_effect_even):
    data = psf_effect_even.data
    actual = centroid_quadratic(data, fit_boxsize=6)
    expected = center_of_image(data)

    # TODO ideally this should be a lot tighter, but honestly even arrays are probably bad anyway
    # TODO does this work wih <0.001 on different computer?
    assert np.all(np.abs(np.array(actual) - np.array(expected)) < 0.05)
Example #3
0
def test_single_star_image(single_star):
    img, table = single_star

    xcenter, ycenter = center_of_image(img)
    xcentroid, ycentroid = centroid_quadratic(img, fit_boxsize=5)
    xref, yref = table[INPUT_TABLE_NAMES[X]][0], table[INPUT_TABLE_NAMES[Y]][0]

    assert np.abs(xref-xcentroid) < 0.005
    assert np.abs(yref-ycentroid) < 0.005
Example #4
0
def cumulative_flux(img, oversampling=1):
    extent = np.min(img.shape)/2
    rs = np.linspace(1, extent, int(extent*oversampling))
    xcenter, ycenter = centroid_quadratic(img)

    apertures = [CircularAperture((xcenter, ycenter), r=r) for r in rs]
    tab = aperture_photometry(img, apertures, method='exact')
    # every aperture has it's own column; exclude first three (id,x,y)
    cumulative_flux = rf.structured_to_unstructured(tab.as_array()).ravel()[3:]

    return rs, cumulative_flux
Example #5
0
def make_anisocado_model(*,
                         oversampling=2,
                         degree=5,
                         seed=0,
                         offaxis=(0, 14),
                         lowpass=0):
    img = AnalyticalScaoPsf(pixelSize=0.004 / oversampling,
                            N=400 * oversampling + 1,
                            seed=seed).shift_off_axis(*offaxis)
    if lowpass != 0:
        y, x = np.indices(img.shape)
        # find center of PSF image
        x_mean, y_mean = centroid_quadratic(img, fit_boxsize=5)
        img = img * Gaussian2D(x_mean=x_mean,
                               y_mean=y_mean,
                               x_stddev=lowpass * oversampling,
                               y_stddev=lowpass * oversampling)(x, y)
        img /= np.sum(img)

    origin = centroid_quadratic(img, fit_boxsize=5)
    return AnisocadoModel(img,
                          oversampling=oversampling,
                          degree=degree,
                          origin=origin)
Example #6
0
def psf_radial_reduce(img, reduction: Callable[[np.ndarray], float] = np.mean):
    # get center of image.
    xcenter, ycenter = centroid_quadratic(img)
    # last radius in pixel where ring is fully in image
    extent = np.min(img.shape)/2

    radii = np.linspace(0.1, extent, int(extent))
    values = []

    for r_in, r_out in zip(radii, radii[1:]):
        aper = CircularAnnulus([xcenter, ycenter], r_in, r_out)
        mask = aper.to_mask('center')
        values.append(reduction(mask.get_values(img)))


    return radii[:-1], np.array(values)/np.max(img)
Example #7
0
def make_psf(
    psf_wavelength: float = 2.15,
    shift: Tuple[int] = (0, 14),
    N: int = 511,
    transform: Callable[[np.ndarray], np.ndarray] = lambda x: x
) -> scopesim.effects.Effect:
    """
    create a psf effect for scopesim to be as close as possible to how an anisocado PSF is used in simcado
    :param psf_wavelength:
    :param shift:
    :param N: ? Size of kernel?
    :param transform: function to apply to the psf array
    :return: effect object you can plug into OpticalTrain
    """
    hdus = anisocado.misc.make_simcado_psf_file([shift], [psf_wavelength],
                                                pixelSize=pixel_scale.value,
                                                N=N)
    image = hdus[2]
    image.data = np.squeeze(
        image.data
    )  # remove leading dimension, we're only looking at a single picture, not a stack

    # re-sample to shift center
    actual_center = np.array(centroid_quadratic(image.data, fit_boxsize=5))
    expected_center = np.array(center_of_image(image.data))
    xshift, yshift = expected_center - actual_center
    resampled = upsample_image(image.data, xshift=xshift, yshift=yshift).real
    image.data = resampled
    image.data = transform(image.data)

    filename = tempfile.NamedTemporaryFile('w', suffix='.fits').name
    image.writeto(filename)

    # noinspection PyTypeChecker
    tmp_psf = anisocado.AnalyticalScaoPsf(N=N, wavelength=psf_wavelength)
    strehl = tmp_psf.strehl_ratio

    # Todo: passing a filename that does not end in .fits causes a weird parsing error
    return scopesim.effects.FieldConstantPSF(
        name=Config.instance().psf_name,
        filename=filename,
        wavelength=psf_wavelength,
        psf_side_length=N,
        strehl_ratio=strehl,
    )
Example #8
0
fitshape = 41

epsf_stars = extract_stars(NDData(img_grid),
                           epsf_sources[:100],
                           size=(fitshape + 2, fitshape + 2))
builder = EPSFBuilder(oversampling=4,
                      smoothing_kernel=make_gauss_kernel(2.3, N=21),
                      maxiters=5)
pre_epsf, _ = cached(lambda: builder.build_epsf(epsf_stars),
                     cache_dir / 'epsf_synthetic',
                     rerun=False)
data = pre_epsf.data[9:-9, 9:-9].copy()
data /= np.sum(data) / np.sum(pre_epsf.oversampling)
epsf = FittableImageModel(data=data, oversampling=pre_epsf.oversampling)
epsf.origin = centroid_quadratic(epsf.data)


def grid_photometry_epsf():
    fit_stages_grid = [
        FitStage(5, 1e-10, 1e-11, np.inf,
                 all_individual),  # first stage: get flux approximately right
        FitStage(5, 0.6, 0.6, 10, all_individual),
        FitStage(5, 0.3, 0.3, 500_000, all_individual),
        #FitStage(30, 0.1, 0.1, 5_000, all_simultaneous)
    ]

    photometry_grid = IncrementalFitPhotometry(SExtractorBackground(),
                                               anisocado_psf,
                                               max_group_size=1,
                                               group_extension_radius=10,
def test_anisocado_psf_odd(psf_effect_odd):
    data = psf_effect_odd.data
    actual = centroid_quadratic(data)
    expected = center_of_image(data)

    assert np.all(np.abs(np.array(actual) - np.array(expected)) < 1e-8)
Example #10
0

plot_dev_vs_mag(flux, eucdev)
save_plot(out_dir, 'naco_noisefloor')
plot_dev_vs_mag(flux_unpert, eucdev_unpert)
save_plot(out_dir, 'naco_noisefloor_unpert')

# %% [markdown]
# # Just debugging below

# %%
from photutils.centroids import centroid_quadratic
from thesis_lib.util import center_of_index
initial_epsf_adapted = FittableImageModel(
    initial_epsf.data, oversampling=initial_epsf.oversampling)
print(centroid_quadratic(initial_epsf_adapted.data))
interp = initial_epsf_adapted.interpolator(np.arange(initial_epsf_adapted.nx),
                                           np.arange(initial_epsf_adapted.ny))
print(centroid_quadratic(interp))
print(center_of_index((initial_epsf_adapted.data.shape)))
np.max(initial_epsf_adapted.data - interp)

# %%
y, x = [i.flatten() for i in np.mgrid[-10:10:100j, -10:10:100j]]
y, x = np.random.uniform(-2, 2, (2, 250, 250))
y = y.flatten()
x = x.flatten()
plt.figure()
plt.plot(*log_squish(x, y, exp=3), 'x')

# %%