Example #1
0
def test_phygnn_model():
    """Test the operation of the PGNN with weighting pfun."""
    PhysicsGuidedNeuralNetwork.seed(0)
    model = PhygnnModel.build_trained(p_fun_pythag,
                                      FEATURES,
                                      LABELS,
                                      P,
                                      normalize=False,
                                      hidden_layers=HIDDEN_LAYERS,
                                      loss_weights=(0.0, 1.0),
                                      n_batch=4,
                                      n_epoch=20)

    test_mae = np.mean(np.abs(model.predict(X, table=False) - Y))

    loss = 0.019
    assert len(model.layers) == 6
    assert len(model.weights) == 6
    assert len(model.history) == 20
    assert isinstance(model.layers[0], InputLayer)
    assert isinstance(model.layers[1], Dense)
    assert isinstance(model.layers[2], Activation)
    assert isinstance(model.layers[3], Dense)
    assert isinstance(model.layers[4], Activation)
    assert isinstance(model.layers[5], Dense)
    assert model.history.validation_loss.values[-1] < loss
    assert test_mae < loss
Example #2
0
def test_save_load():
    """Test the save/load operations of PGNN"""
    PhysicsGuidedNeuralNetwork.seed(0)
    model = PhysicsGuidedNeuralNetwork(p_fun=p_fun_pythag,
                                       hidden_layers=HIDDEN_LAYERS,
                                       loss_weights=(0.0, 1.0),
                                       n_features=2,
                                       n_labels=1,
                                       feature_names=['a', 'b'],
                                       output_names=['c'])

    model.fit(X, Y_NOISE, P, n_batch=4, n_epoch=20)
    y_pred = model.predict(X)

    with tempfile.TemporaryDirectory() as td:
        fpath = os.path.join(td, 'tempfile.pkl')
        model.save(fpath)
        loaded = PhysicsGuidedNeuralNetwork.load(fpath)

    assert len(model.layers) == len(loaded.layers)
    for layer0, layer1 in zip(model.layers, loaded.layers):
        for i in range(len(layer0.weights)):
            assert layer0.weights[i].shape == layer1.weights[i].shape
            assert np.allclose(layer0.weights[i], layer1.weights[i])

    y_pred_loaded = loaded.predict(X)
    assert np.allclose(y_pred, y_pred_loaded)
    assert loaded.feature_names == ['a', 'b']
    assert loaded.output_names == ['c']
    assert isinstance(model._optimizer, Adam)
    assert isinstance(loaded._optimizer, Adam)
    assert model._optimizer.get_config() == loaded._optimizer.get_config()
Example #3
0
def test_df_input():
    """Test the operation of the PGNN with labeled input dataframes."""
    PhysicsGuidedNeuralNetwork.seed(0)
    model = PhysicsGuidedNeuralNetwork(p_fun=p_fun_pythag,
                                       hidden_layers=HIDDEN_LAYERS,
                                       loss_weights=(0.0, 1.0),
                                       n_features=2,
                                       n_labels=1)
    x_df = pd.DataFrame(X, columns=('a', 'b'))
    y_df = pd.DataFrame(Y_NOISE, columns=('c', ))
    p_df = pd.DataFrame(P, columns=('a', 'b'))
    model.fit(x_df, y_df, p_df, n_batch=1, n_epoch=2)

    assert model.feature_names == ['a', 'b']
    assert model.output_names == ['c']

    x_df_bad = pd.DataFrame(X, columns=('x1', 'x2'))
    y_df_bad = pd.DataFrame(Y_NOISE, columns=('y', ))

    try:
        model.fit(x_df_bad, y_df_bad, p_df, n_batch=1, n_epoch=2)
    except AssertionError as e:
        assert "Cannot work with input x columns: ['x1', 'x2']" in str(e)

    try:
        model.fit(x_df, y_df_bad, p_df, n_batch=1, n_epoch=2)
    except AssertionError as e:
        assert "Cannot work with input y columns: ['y']" in str(e)
Example #4
0
def test_OHE():
    """
    Test one-hot encoding
    """
    ohe_features = FEATURES.copy()
    categories = list('def')
    ohe_features['categorical'] = np.random.choice(categories, len(FEATURES))
    one_hot_categories = {'categorical': categories}
    x = ohe_features.values

    PhysicsGuidedNeuralNetwork.seed(0)
    model = PhygnnModel.build_trained(p_fun_pythag,
                                      ohe_features,
                                      LABELS,
                                      P,
                                      one_hot_categories=one_hot_categories,
                                      hidden_layers=HIDDEN_LAYERS,
                                      loss_weights=(0.0, 1.0),
                                      n_batch=4,
                                      n_epoch=20)

    assert all(np.isin(categories, model.feature_names))
    assert not any(np.isin(categories, model.input_feature_names))
    assert 'categorical' not in model.feature_names
    assert 'categorical' in model.input_feature_names

    out = model.predict(x)
    assert 'c' in out
Example #5
0
def test_conv3d():
    """Test a phygnn model with a conv3d layer. The data in this test is
    garbage, just a test on shapes and save/load functionality"""

    input_layer = {
        'class': 'Conv3D',
        'filters': 2,
        'kernel_size': 3,
        'activation': 'relu'
    }
    hidden_layers = [{'units': 64, 'activation': 'relu'}, {'class': 'Flatten'}]
    output_layer = {'units': 24}
    model = PhysicsGuidedNeuralNetwork(p_fun=p_fun_pythag,
                                       hidden_layers=hidden_layers,
                                       input_layer=input_layer,
                                       output_layer=output_layer,
                                       loss_weights=(1.0, 0.0),
                                       n_features=1,
                                       n_labels=24)

    train_x_bad = np.random.uniform(-1, 1, (50, 12, 7, 7, 2))
    train_x = np.random.uniform(-1, 1, (50, 12, 7, 7, 1))
    train_y = np.random.uniform(-1, 1, (50, 24))

    assert len(model.layers) == 5, "conv layers did not get added!"
    assert isinstance(model.layers[0], Conv3D)
    assert isinstance(model.layers[1], Dense)
    assert isinstance(model.layers[2], Activation)
    assert isinstance(model.layers[3], Flatten)
    assert isinstance(model.layers[4], Dense)

    # test raise on bad feature channel dimension
    with pytest.raises(AssertionError):
        model.fit(train_x_bad, train_y, train_x, n_batch=1, n_epoch=10)

    model.fit(train_x, train_y, train_x, n_batch=1, n_epoch=10)
    y_pred = model.predict(train_x)
    assert y_pred.shape == (50, 24)

    with tempfile.TemporaryDirectory() as td:
        fpath = os.path.join(td, 'tempfile.pkl')
        model.save(fpath)
        loaded = PhysicsGuidedNeuralNetwork.load(fpath)

    assert len(model.layers) == len(loaded.layers)
    for layer0, layer1 in zip(model.layers, loaded.layers):
        for i in range(len(layer0.weights)):
            assert layer0.weights[i].shape == layer1.weights[i].shape
            assert np.allclose(layer0.weights[i], layer1.weights[i])

    y_pred_loaded = loaded.predict(train_x)

    assert np.allclose(y_pred, y_pred_loaded)
    assert len(model.layers) == len(loaded.layers)
Example #6
0
def test_batching_5D():
    """Test the batching with high dimensional data (5D)"""
    x0 = np.random.uniform(0, 1, (50, 4, 4, 4, 2))
    y0 = np.random.uniform(0, 1, (50, 4, 1, 1, 1))
    p0 = x0.copy()

    x_batches, y_batches, p_batches = PhysicsGuidedNeuralNetwork.make_batches(
        x0, y0, p0, n_batch=6, shuffle=False)

    assert len(x_batches) == 6
    assert len(y_batches) == 6
    assert len(p_batches) == 6
    assert len(x0.shape) == 5
    assert len(y0.shape) == 5
    assert len(p0.shape) == 5
    assert len(x_batches[0].shape) == 5
    assert len(y_batches[0].shape) == 5
    assert len(p_batches[0].shape) == 5

    assert (x_batches[0] == x0[:len(x_batches[0])]).all()
    assert (y_batches[0] == y0[:len(y_batches[0])]).all()
    assert (p_batches[0] == p0[:len(p_batches[0])]).all()

    assert (x_batches[-1] == x0[-(len(x_batches[0]) - 1):]).all()
    assert (y_batches[-1] == y0[-(len(y_batches[0]) - 1):]).all()
    assert (p_batches[-1] == p0[-(len(p_batches[0]) - 1):]).all()
Example #7
0
def test_validation_split_5D():
    """Test the validation split with high dimensional data (5D)"""
    x0 = np.random.uniform(0, 1, (50, 4, 4, 4, 2))
    y0 = np.random.uniform(0, 1, (50, 4, 1, 1, 1))
    p0 = x0.copy()
    out = PhysicsGuidedNeuralNetwork.get_val_split(x0,
                                                   y0,
                                                   p0,
                                                   shuffle=False,
                                                   validation_split=0.3)
    x, y, p, x_val, y_val, p_val = out
    assert len(x0.shape) == 5
    assert len(y0.shape) == 5
    assert len(p0.shape) == 5
    assert len(x.shape) == 5
    assert len(y.shape) == 5
    assert len(p.shape) == 5
    assert len(x_val.shape) == 5
    assert len(y_val.shape) == 5
    assert len(p_val.shape) == 5
    assert (x_val == p_val).all()
    assert (x == p).all()
    assert (x == x0[-len(x):]).all()
    assert (y == y0[-len(y):]).all()
    assert (p == p0[-len(p):]).all()
    assert (x_val == x0[:len(x_val)]).all()
    assert (y_val == y0[:len(y_val)]).all()
    assert (p_val == p0[:len(p_val)]).all()
Example #8
0
def test_validation_split_shuffle():
    """Test the validation split operation with shuffling"""
    out = PhysicsGuidedNeuralNetwork._get_val_split(X,
                                                    Y,
                                                    P,
                                                    shuffle=True,
                                                    validation_split=0.3)
    x, y, p, x_val, y_val, p_val = out

    assert (x_val == p_val).all()
    assert (x == p).all()

    assert id(x) != id(X)
    assert x.shape[1] == x.shape[1]
    assert len(x) == int(0.7 * len(X))
    assert len(x_val) == int(0.3 * len(X))

    assert id(y) != id(Y)
    assert y.shape[1] == y.shape[1]
    assert len(y) == int(0.7 * len(Y))
    assert len(y_val) == int(0.3 * len(Y))

    assert id(p) != id(P)
    assert p.shape[1] == p.shape[1]
    assert len(p) == int(0.7 * len(P))
    assert len(p_val) == int(0.3 * len(P))

    for i in range(len(x_val)):
        row = x_val[i, :]
        assert ~np.any(np.all((row == x), axis=1))

    for i in range(len(p_val)):
        row = p_val[i, :]
        assert ~np.any(np.all((row == p), axis=1))
Example #9
0
def test_normalize():
    """Test the operation of the PGNN with weighting pfun."""
    PhysicsGuidedNeuralNetwork.seed(0)
    model = PhygnnModel.build_trained(p_fun_pythag,
                                      FEATURES,
                                      LABELS,
                                      P,
                                      normalize=False,
                                      hidden_layers=HIDDEN_LAYERS,
                                      loss_weights=(0.0, 1.0),
                                      n_batch=4,
                                      n_epoch=20)

    test_mae = np.mean(np.abs(model.predict(X, table=False) - Y))

    loss = 0.015
    assert model.history.validation_loss.values[-1] < loss
    assert test_mae < loss
Example #10
0
def test_nn():
    """Test the basic NN operation of the PGNN without weighting pfun."""
    PhysicsGuidedNeuralNetwork.seed(0)
    model = PhygnnModel.build_trained(p_fun_pythag,
                                      features,
                                      labels,
                                      P,
                                      hidden_layers=HIDDEN_LAYERS,
                                      loss_weights=(1.0, 0.0),
                                      n_batch=4,
                                      n_epoch=20)

    test_mae = np.mean(np.abs(model.predict(X, table=False) - Y))

    loss = 0.15
    assert len(model.layers) == 6
    assert len(model.weights) == 6
    assert len(model.history) == 20
    assert model.history.validation_loss.values[-1] < loss
    assert test_mae < loss
Example #11
0
def test_save_load():
    """Test the save/load operations of PGNN"""
    PhysicsGuidedNeuralNetwork.seed(0)
    model = PhysicsGuidedNeuralNetwork(p_fun=p_fun_pythag,
                                       hidden_layers=HIDDEN_LAYERS,
                                       loss_weights=(0.0, 1.0),
                                       n_features=2,
                                       n_labels=1,
                                       feature_names=['a', 'b'],
                                       output_names=['c'])

    model.fit(X, Y_NOISE, P, n_batch=4, n_epoch=20)
    y_pred = model.predict(X)

    model.save(FPATH)
    loaded = PhysicsGuidedNeuralNetwork.load(FPATH)
    y_pred_loaded = loaded.predict(X)
    assert np.allclose(y_pred, y_pred_loaded)
    assert loaded.feature_names == ['a', 'b']
    assert loaded.output_names == ['c']
    os.remove(FPATH)
Example #12
0
def test_save_load():
    """Test the save/load operations of PhygnnModel"""
    PhysicsGuidedNeuralNetwork.seed(0)
    model = PhygnnModel.build_trained(p_fun_pythag,
                                      FEATURES,
                                      LABELS,
                                      P,
                                      normalize=False,
                                      hidden_layers=HIDDEN_LAYERS,
                                      loss_weights=(0.0, 1.0),
                                      n_batch=4,
                                      n_epoch=20,
                                      save_path=FPATH)
    y_pred = model[X]

    loaded = PhygnnModel.load(FPATH)
    y_pred_loaded = loaded[X]
    np.allclose(y_pred.values, y_pred_loaded.values)
    assert loaded.feature_names == ['a', 'b']
    assert loaded.label_names == ['c']
    shutil.rmtree(os.path.dirname(FPATH))
Example #13
0
def test_batch_norm():
    """Test the addition of BatchNormalization layers"""
    HIDDEN_LAYERS = [
        {
            'units': 64
        },
        {
            'batch_normalization': {
                'axis': 1
            }
        },
        {
            'activation': 'relu'
        },
        {
            'units': 64,
            'activation': 'relu',
            'batch_normalization': {
                'axis': 1
            }
        },
    ]
    model = PhysicsGuidedNeuralNetwork(p_fun=p_fun_pythag,
                                       hidden_layers=HIDDEN_LAYERS,
                                       loss_weights=(0.0, 1.0),
                                       n_features=2,
                                       n_labels=1)

    assert len(model.layers) == 8, "Batch norm layers did not get added!"
    assert isinstance(model.layers[0], InputLayer)
    assert isinstance(model.layers[1], Dense)
    assert isinstance(model.layers[2], BatchNormalization)
    assert isinstance(model.layers[3], Activation)
    assert isinstance(model.layers[4], Dense)
    assert isinstance(model.layers[5], BatchNormalization)
    assert isinstance(model.layers[6], Activation)

    model.fit(X, Y_NOISE, P, n_batch=1, n_epoch=10)
    y_pred = model.predict(X)

    with tempfile.TemporaryDirectory() as td:
        fpath = os.path.join(td, 'tempfile.pkl')
        model.save(fpath)
        loaded = PhysicsGuidedNeuralNetwork.load(fpath)

    y_pred_loaded = loaded.predict(X)

    assert np.allclose(y_pred, y_pred_loaded)
    assert len(model.layers) == len(loaded.layers)
Example #14
0
def test_validation_split_no_shuffle():
    """Test the validation split operation without shuffling"""
    out = PhysicsGuidedNeuralNetwork._get_val_split(X,
                                                    Y,
                                                    P,
                                                    shuffle=False,
                                                    validation_split=0.3)
    x, y, p, x_val, y_val, p_val = out
    assert (x_val == p_val).all()
    assert (x == p).all()
    assert all(np.sqrt(x[:, 0]**2 + x[:, 1]**2).reshape((len(x), 1)) == y)
    assert (x_val == X[0:len(x_val)]).all()
    assert (y_val == Y[0:len(y_val)]).all()
    assert (p_val == P[0:len(p_val)]).all()
Example #15
0
def test_lstm():
    """Test a phygnn model with a conv1d layer. The data in this test is
    garbage, just a test on shapes and creation. Save/load doesnt work yet
    for lstm"""

    input_layer = {'class': 'LSTM', 'units': 24, 'return_sequences': True}
    hidden_layers = [{'units': 64, 'activation': 'relu'}]
    output_layer = {'units': 24}
    model = PhysicsGuidedNeuralNetwork(p_fun=p_fun_pythag,
                                       hidden_layers=hidden_layers,
                                       input_layer=input_layer,
                                       output_layer=output_layer,
                                       loss_weights=(1.0, 0.0),
                                       n_features=2,
                                       n_labels=24)

    train_x = np.random.uniform(-1, 1, (50, 12, 2))
    train_y = np.random.uniform(-1, 1, (50, 12, 24))

    assert len(model.layers) == 4, "lstm layers did not get added!"
    assert isinstance(model.layers[0], LSTM)
    assert isinstance(model.layers[1], Dense)
    assert isinstance(model.layers[2], Activation)
    assert isinstance(model.layers[3], Dense)

    model.fit(train_x, train_y, train_x, n_batch=1, n_epoch=10)
    y_pred = model.predict(train_x)
    assert y_pred.shape == (50, 12, 24)

    with tempfile.TemporaryDirectory() as td:
        fpath = os.path.join(td, 'tempfile.pkl')
        model.save(fpath)
        loaded = PhysicsGuidedNeuralNetwork.load(fpath)

    assert len(model.layers) == len(loaded.layers)
    for layer0, layer1 in zip(model.layers, loaded.layers):
        for i in range(len(layer0.weights)):
            assert layer0.weights[i].shape == layer1.weights[i].shape
            assert np.allclose(layer0.weights[i], layer1.weights[i])

    y_pred_loaded = loaded.predict(train_x)

    assert np.allclose(y_pred, y_pred_loaded)
    assert len(model.layers) == len(loaded.layers)
Example #16
0
def test_bad_pfun():
    """Test the preflight check with a non-differentiable p_fun"""
    PhysicsGuidedNeuralNetwork.seed(0)
    model = PhysicsGuidedNeuralNetwork(p_fun=p_fun_bad,
                                       hidden_layers=HIDDEN_LAYERS,
                                       loss_weights=(0.0, 1.0),
                                       n_features=2,
                                       n_labels=1)
    with pytest.raises(RuntimeError) as e:
        model.fit(X, Y_NOISE, P, n_batch=4, n_epoch=20)

    assert 'not differentiable' in str(e.value)
Example #17
0
def test_classification():
    """Test the phygnn model as a classifier without the pfun"""
    PhysicsGuidedNeuralNetwork.seed(0)
    model = PhysicsGuidedNeuralNetwork(p_fun=None,
                                       hidden_layers=hidden_layers,
                                       output_layer=output_layer,
                                       loss_weights=(1.0, 0.0),
                                       metric='binary_crossentropy',
                                       learning_rate=0.05,
                                       n_features=2,
                                       n_labels=1)
    model.fit(features, labels, features, n_batch=1, n_epoch=50)

    y_pred = model.predict(features)
    accuracy = 100 * (np.round(y_pred) == labels.values).sum() / len(labels)
    assert accuracy > 0.99
Example #18
0
def test_batching_shuffle():
    """Test the batching operation with shuffling"""
    x_batches, y_batches, p_batches = PhysicsGuidedNeuralNetwork._make_batches(
        X, Y, P, n_batch=4, shuffle=True)

    assert len(x_batches) == 4
    assert len(y_batches) == 4
    assert len(p_batches) == 4

    assert ~(x_batches[0] == X[0:len(x_batches[0]), :]).all()
    assert ~(y_batches[0] == Y[0:len(y_batches[0]), :]).all()
    assert ~(p_batches[0] == P[0:len(p_batches[0]), :]).all()

    for i, x_b in enumerate(x_batches):
        assert (x_b == p_batches[i]).all()
        truth = np.sqrt(x_b[:, 0]**2 + x_b[:, 1]**2).reshape((len(x_b), 1))
        y_check = y_batches[i]
        assert np.allclose(truth, y_check)
Example #19
0
def test_nn():
    """Test the basic NN operation of the PGNN without weighting pfun."""
    PhysicsGuidedNeuralNetwork.seed(0)
    model = PhysicsGuidedNeuralNetwork(p_fun=p_fun_pythag,
                                       hidden_layers=HIDDEN_LAYERS,
                                       loss_weights=(1.0, 0.0),
                                       n_features=2,
                                       n_labels=1,
                                       feature_names=['a', 'b'],
                                       output_names=['c'])
    model.fit(X, Y_NOISE, P, n_batch=4, n_epoch=20)

    test_mae = np.mean(np.abs(model.predict(X) - Y))

    assert len(model.layers) == 6
    assert len(model.weights) == 6
    assert len(model.history) == 20
    assert model.history.validation_loss.values[-1] < 0.15
    assert test_mae < 0.15
Example #20
0
def test_dropouts():
    """Test the dropout rate kwargs for adding dropout layers."""
    HIDDEN_LAYERS = [{
        'units': 64
    }, {
        'activation': 'relu'
    }, {
        'dropout': 0.1
    }, {
        'units': 64,
        'activation': 'relu',
        'name': 'relu2',
        'dropout': 0.1
    }]
    model = PhysicsGuidedNeuralNetwork(p_fun=p_fun_pythag,
                                       hidden_layers=HIDDEN_LAYERS,
                                       loss_weights=(0.0, 1.0),
                                       n_features=2,
                                       n_labels=1)

    assert len(model.layers) == 8, "dropout layers did not get added!"
    assert isinstance(model.layers[0], InputLayer)
    assert isinstance(model.layers[1], Dense)
    assert isinstance(model.layers[2], Activation)
    assert isinstance(model.layers[3], Dropout)
    assert isinstance(model.layers[4], Dense)
    assert isinstance(model.layers[5], Activation)
    assert isinstance(model.layers[6], Dropout)

    model.fit(X, Y_NOISE, P, n_batch=4, n_epoch=20)
    y_pred = model.predict(X)

    model.save(FPATH)
    loaded = PhysicsGuidedNeuralNetwork.load(FPATH)
    y_pred_loaded = loaded.predict(X)
    assert np.allclose(y_pred, y_pred_loaded)
    assert len(model.layers) == len(loaded.layers)
    os.remove(FPATH)
Example #21
0
def test_phygnn():
    """Test the operation of the PGNN with weighting pfun."""
    PhysicsGuidedNeuralNetwork.seed(0)
    model = PhysicsGuidedNeuralNetwork(p_fun=p_fun_pythag,
                                       hidden_layers=HIDDEN_LAYERS,
                                       loss_weights=(0.0, 1.0),
                                       n_features=2,
                                       n_labels=1)
    model.fit(X, Y_NOISE, P, n_batch=4, n_epoch=20)

    test_mae = np.mean(np.abs(model.predict(X) - Y))

    assert len(model.layers) == 6
    assert len(model.weights) == 6
    assert len(model.history) == 20
    assert isinstance(model.layers[0], InputLayer)
    assert isinstance(model.layers[1], Dense)
    assert isinstance(model.layers[2], Activation)
    assert isinstance(model.layers[3], Dense)
    assert isinstance(model.layers[4], Activation)
    assert isinstance(model.layers[5], Dense)
    assert model.history.validation_loss.values[-1] < 0.015
    assert test_mae < 0.015
Example #22
0
def test_bad_categories():
    """
    Test OHE checks
    """
    one_hot_categories = {'categorical': list('abc')}
    feature_names = FEATURES.columns.tolist() + ['categorical']
    label_names = 'c'
    with pytest.raises(RuntimeError):
        PhygnnModel.build(p_fun_pythag,
                          feature_names,
                          label_names,
                          one_hot_categories=one_hot_categories,
                          hidden_layers=HIDDEN_LAYERS,
                          loss_weights=(0.0, 1.0))

    one_hot_categories = {'categorical': list('cdf')}
    feature_names = FEATURES.columns.tolist() + ['categorical']
    label_names = 'c'
    with pytest.raises(RuntimeError):
        PhygnnModel.build(p_fun_pythag,
                          feature_names,
                          label_names,
                          one_hot_categories=one_hot_categories,
                          hidden_layers=HIDDEN_LAYERS,
                          loss_weights=(0.0, 1.0))

    one_hot_categories = {'categorical': list('def')}
    feature_names = FEATURES.columns.tolist() + ['categories']
    label_names = 'c'
    with pytest.raises(RuntimeError):
        PhygnnModel.build(p_fun_pythag,
                          feature_names,
                          label_names,
                          one_hot_categories=one_hot_categories,
                          hidden_layers=HIDDEN_LAYERS,
                          loss_weights=(0.0, 1.0))

    one_hot_categories = {'cat1': list('def'), 'cat2': list('fgh')}
    feature_names = FEATURES.columns.tolist() + ['cat1', 'cat2']
    label_names = 'c'
    with pytest.raises(RuntimeError):
        PhygnnModel.build(p_fun_pythag,
                          feature_names,
                          label_names,
                          one_hot_categories=one_hot_categories,
                          hidden_layers=HIDDEN_LAYERS,
                          loss_weights=(0.0, 1.0))

    ohe_features = FEATURES.copy()
    categories = list('def')
    ohe_features['categorical'] = np.random.choice(categories, len(FEATURES))
    one_hot_categories = {'categorical': categories}
    x = ohe_features.values[:, 1:]
    PhysicsGuidedNeuralNetwork.seed(0)
    model = PhygnnModel.build_trained(p_fun_pythag,
                                      ohe_features,
                                      LABELS,
                                      P,
                                      one_hot_categories=one_hot_categories,
                                      hidden_layers=HIDDEN_LAYERS,
                                      loss_weights=(0.0, 1.0),
                                      n_batch=4,
                                      n_epoch=20)
    with pytest.raises(RuntimeError):
        model.predict(x)
Example #23
0
def test_dummy_p_fun():
    """Test the phygnn model with dummy pfun that is just MAE"""
    PhysicsGuidedNeuralNetwork.seed(0)
    model_0 = PhysicsGuidedNeuralNetwork(p_fun=p_fun_dummy,
                                         hidden_layers=HIDDEN_LAYERS,
                                         loss_weights=(0.5, 0.5),
                                         n_features=2,
                                         n_labels=1)
    model_0.fit(X, Y_NOISE, P, n_batch=4, n_epoch=20)

    PhysicsGuidedNeuralNetwork.seed(0)
    model_1 = PhysicsGuidedNeuralNetwork(p_fun=p_fun_dummy,
                                         hidden_layers=HIDDEN_LAYERS,
                                         loss_weights=(1.0, 0.0),
                                         metric='mae',
                                         n_features=2,
                                         n_labels=1)
    model_1.fit(X, Y_NOISE, P, n_batch=4, n_epoch=20)

    assert np.allclose(model_0.history.training_loss.values.astype(float),
                       model_1.history.training_loss.values.astype(float))
Example #24
0
def test_dropouts():
    """Test the dropout rate kwargs for adding dropout layers."""
    hidden_layers_1 = [{
        'units': 64
    }, {
        'activation': 'relu'
    }, {
        'units': 64,
        'activation': 'relu',
        'name': 'relu2'
    }]
    hidden_layers_2 = [{
        'units': 64
    }, {
        'activation': 'relu'
    }, {
        'dropout': 0.1
    }, {
        'units': 64,
        'activation': 'relu',
        'name': 'relu2',
        'dropout': 0.1
    }]
    PhysicsGuidedNeuralNetwork.seed()
    model_1 = PhysicsGuidedNeuralNetwork(p_fun=p_fun_pythag,
                                         hidden_layers=hidden_layers_1,
                                         loss_weights=(0.0, 1.0),
                                         n_features=2,
                                         n_labels=1)
    PhysicsGuidedNeuralNetwork.seed()
    model_2 = PhysicsGuidedNeuralNetwork(p_fun=p_fun_pythag,
                                         hidden_layers=hidden_layers_2,
                                         loss_weights=(0.0, 1.0),
                                         n_features=2,
                                         n_labels=1)

    assert len(model_1.layers) == 6
    assert len(model_2.layers) == 8, "dropout layers did not get added!"
    assert isinstance(model_2.layers[0], InputLayer)
    assert isinstance(model_2.layers[1], Dense)
    assert isinstance(model_2.layers[2], Activation)
    assert isinstance(model_2.layers[3], Dropout)
    assert isinstance(model_2.layers[4], Dense)
    assert isinstance(model_2.layers[5], Activation)
    assert isinstance(model_2.layers[6], Dropout)

    PhysicsGuidedNeuralNetwork.seed()
    model_1.fit(X, Y_NOISE, P, n_batch=4, n_epoch=20)

    PhysicsGuidedNeuralNetwork.seed()
    model_2.fit(X, Y_NOISE, P, n_batch=4, n_epoch=20)

    y_pred_1 = model_1.predict(X)
    y_pred_2 = model_2.predict(X)

    # make sure dropouts dont predict the same as non-dropout
    diff = np.abs(y_pred_1 - y_pred_2)
    assert not np.allclose(y_pred_1, y_pred_2)
    assert np.max(diff) > 0.1

    with tempfile.TemporaryDirectory() as td:
        fpath = os.path.join(td, 'tempfile.pkl')
        model_2.save(fpath)
        loaded = PhysicsGuidedNeuralNetwork.load(fpath)

    y_pred_loaded = loaded.predict(X)
    assert np.allclose(y_pred_2, y_pred_loaded)
    assert len(model_2.layers) == len(loaded.layers)
Example #25
0
def test_bias_regularization():
    """Test the bias regularization of phygnn."""
    base = PhysicsGuidedNeuralNetwork(p_fun=p_fun_pythag,
                                      hidden_layers=HIDDEN_LAYERS,
                                      loss_weights=(1.0, 0.0),
                                      n_features=2,
                                      n_labels=1)

    model_l1 = PhysicsGuidedNeuralNetwork(p_fun=p_fun_pythag,
                                          hidden_layers=HIDDEN_LAYERS,
                                          loss_weights=(1.0, 0.0),
                                          n_features=2,
                                          n_labels=1,
                                          bias_reg_rate=0.01,
                                          bias_reg_power=1)

    model_l2 = PhysicsGuidedNeuralNetwork(p_fun=p_fun_pythag,
                                          hidden_layers=HIDDEN_LAYERS,
                                          loss_weights=(1.0, 0.0),
                                          n_features=2,
                                          n_labels=1,
                                          bias_reg_rate=0.01,
                                          bias_reg_power=2)

    base.seed(0)
    base.fit(X, Y_NOISE, P, n_batch=1, n_epoch=20)
    model_l1.seed(0)
    model_l1.fit(X, Y_NOISE, P, n_batch=1, n_epoch=20)
    model_l2.seed(0)
    model_l2.fit(X, Y_NOISE, P, n_batch=1, n_epoch=20)

    assert base.bias_reg_term > model_l1.bias_reg_term
    assert model_l1.bias_reg_term > model_l2.bias_reg_term
    assert np.abs(base.bias_reg_term - 5) < 5
    assert np.abs(model_l1.bias_reg_term - 4) < 5
    assert np.abs(model_l2.bias_reg_term - 1) < 5