Example #1
0
def test_pickle_categorical_column(slices):
    sr = Series(["a", "b", None, "a", "c", "b"]).astype("category")
    sliced_sr = sr.iloc[slices]
    input_col = sliced_sr._column

    pickled = pickle.dumps(input_col)
    out = pickle.loads(pickled)

    assert_eq(Series(out), Series(input_col))
Example #2
0
 def deserialize(self, header: Dict, buffers: List, context: Dict):
     obj_type = self.obj_type
     if 'obj_type' in header:
         obj_type = pickle.loads(header['obj_type'])
     if hasattr(obj_type, '_fields'):
         # namedtuple
         return obj_type(*self._iter_deserial(header['headers'], buffers, context))
     else:
         return obj_type(self._iter_deserial(header['headers'], buffers, context))
Example #3
0
    def test_displacement_pickle(self):

        displacement = sitk.Image((512, 512), sitk.sitkVectorFloat64, 2)
        displacement.SetOrigin((6, 5.2))

        tx = sitk.DisplacementFieldTransform(displacement)
        dump = pickle.dumps(tx)
        tx2 = pickle.loads(dump)

        self.assertEqual(tx, tx2)
Example #4
0
    def test_affine_pickle(self):
        tx = sitk.AffineTransform(3)

        tx.SetCenter([2.3, 4.5, 6.7])
        tx.SetMatrix([9, 8, 7, 6, 5, 4, 3, 2, 1])

        dump = pickle.dumps(tx)
        tx2 = pickle.loads(dump)

        self.assertEqual(tx, tx2)
Example #5
0
def test_rmm_device_buffer_pickle_roundtrip(hb):
    db = rmm.DeviceBuffer.to_device(hb)
    pb = pickle.dumps(db)
    del db
    db2 = pickle.loads(pb)
    hb2 = db2.tobytes()
    assert hb == hb2
    # out-of-band
    if pickle.HIGHEST_PROTOCOL >= 5:
        db = rmm.DeviceBuffer.to_device(hb)
        buffers = []
        pb2 = pickle.dumps(db, protocol=5, buffer_callback=buffers.append)
        del db
        assert len(buffers) == 1
        assert isinstance(buffers[0], pickle.PickleBuffer)
        assert bytes(buffers[0]) == hb
        db3 = pickle.loads(pb2, buffers=buffers)
        hb3 = db3.tobytes()
        assert hb3 == hb
Example #6
0
def test_pickle_series(named):
    np.random.seed(0)
    if named:
        ser = Series(np.random.random(10), name="a")
    else:
        ser = Series(np.random.random(10))

    pickled = pickle.dumps(ser)
    out = pickle.loads(pickled)
    assert (ser == out).all()
Example #7
0
 def deserialize(self, header: Dict, buffers: List, context: Dict):
     obj_type = self.obj_type
     if "obj_type" in header:
         obj_type = pickle.loads(header["obj_type"])
     if hasattr(obj_type, "_fields"):
         # namedtuple
         return obj_type(
             *(yield from self._list_deserial(header["headers"], buffers)))
     else:
         return obj_type((yield from
                          self._list_deserial(header["headers"], buffers)))
Example #8
0
def from_bytes(bytes_graph: bytes, check_version: bool = True) -> BELGraph:
    """Read a graph from bytes (the result of pickling the graph).

    :param bytes_graph: File or filename to write
    :param check_version: Checks if the graph was produced by this version of PyBEL
    """
    graph = pickle.loads(bytes_graph)

    raise_for_not_bel(graph)
    if check_version:
        raise_for_old_graph(graph)

    return graph
Example #9
0
File: core.py Project: edgar87/mars
    def deserialize(self, header: Dict, buffers: List):
        key_buffers = buffers[:header['key_buf_num']]
        value_buffers = buffers[header['key_buf_num']:]

        obj_type = dict
        if 'obj_type' in header:
            obj_type = pickle.loads(header['obj_type'])

        return obj_type(
            zip(
                self._iter_deserial(header['key_headers'], key_buffers),
                self._iter_deserial(header['value_headers'], value_buffers),
            ))
Example #10
0
def get_pkl(bucket_name, key):
	s3 = boto3.resource('s3')

	obj = s3.Object(

		bucket_name=bucket_name,

		key=key,

	)

	obj_body = obj.get()['Body'].read()
	data = pickle.loads(obj_body)

	return data
Example #11
0
def process_holistic(s, indexes, start=None, end=None):
    keypoints = pickle5.loads(lzma.decompress(s['sign']))
    keypoints = keypoints[start:end]

    # Holistic
    keypoints = keypoints.reshape(
        (-1, 543, 4)).astype('float32')[:, :, :3]  # [0, 1, 3] for visibility

    # Openpose
    # keypoints = keypoints.reshape((-1, 135, 3)).astype('float32')
    # shoulder_means = (keypoints[:, 5:6, :2] + keypoints[:, 6:7, :2]) / 2
    # keypoints[:, :, :2] -= shoulder_means
    # TODO Reconcile

    #keypoints[:, :, 1] = - keypoints[:, :, 1]
    keypoints = rearrange(keypoints, "T V C -> C T V ()")
    # T V C -> C T V M
    keypoints = keypoints[:, :, indexes]
    return keypoints
Example #12
0
    def test_bspline_pickle(self):

        M = [0, 1, 1, 0]

        img1 = sitk.Image([10, 10], sitk.sitkFloat64)
        img1.SetOrigin((.01, 5.2))
        img1.SetDirection(M)
        img1 += -.1

        img2 = sitk.Image([10, 10], sitk.sitkFloat64)
        img2.SetOrigin([.01, 5.2])
        img2.SetDirection(M)
        img2 -= 0.1

        tx = sitk.BSplineTransform([img1, img2], 3)
        dump = pickle.dumps(tx)
        tx2 = pickle.loads(dump)

        self.assertEqual(tx, tx2)
Example #13
0
def check_serialization(df):
    # basic
    assert_frame_picklable(df)
    # sliced
    assert_frame_picklable(df[:-1])
    assert_frame_picklable(df[1:])
    assert_frame_picklable(df[2:-2])
    # sorted
    sortvaldf = df.sort_values("vals")
    assert isinstance(sortvaldf.index, GenericIndex)
    assert_frame_picklable(sortvaldf)
    # out-of-band
    if pickle.HIGHEST_PROTOCOL >= 5:
        buffers = []
        serialbytes = pickle.dumps(
            df, protocol=5, buffer_callback=buffers.append
        )
        for b in buffers:
            assert isinstance(b, pickle.PickleBuffer)
        loaded = pickle.loads(serialbytes, buffers=buffers)
        assert_eq(loaded, df)
Example #14
0
def test_pickle(input_type, protocol):
    if protocol > pickle.HIGHEST_PROTOCOL:
        pytest.skip(
            f"Trying to test with pickle protocol {protocol},"
            f" but highest supported protocol is {pickle.HIGHEST_PROTOCOL}."
        )
    if input_type == 'series':
        inp = create_input(input_type, np.float32, (10, 1), 'C')
    else:
        inp = create_input(input_type, np.float32, (10, 5), 'F')
    ary = CumlArray(data=inp)
    dumps_kwargs = {"protocol": protocol}
    loads_kwargs = {}
    f = []
    len_f = 0
    if protocol >= 5:
        dumps_kwargs["buffer_callback"] = f.append
        loads_kwargs["buffers"] = f
        len_f = 1
    a = pickle.dumps(ary, **dumps_kwargs)
    b = pickle.loads(a, **loads_kwargs)
    assert len(f) == len_f
    if input_type == 'numpy':
        assert np.all(inp == b.to_output('numpy'))
    elif input_type == 'series':
        assert np.all(inp == b.to_output('series'))
    else:
        assert cp.all(inp == cp.asarray(b))

    assert ary.__cuda_array_interface__['shape'] == \
        b.__cuda_array_interface__['shape']
    assert ary.__cuda_array_interface__['strides'] == \
        b.__cuda_array_interface__['strides']
    assert ary.__cuda_array_interface__['typestr'] == \
        b.__cuda_array_interface__['typestr']

    if input_type != 'series':
        # skipping one dimensional ary order test
        assert ary.order == b.order
Example #15
0
def retrieve_model(bucket_name, source_blob_name):
    """Import pickle model already trained form bucket.

    Arguments
    ---------
    bucket_name: str
        Bucket name.
    source_blob_name: str
        Path to the file trained model in bucket.

    Return
    ------
    model: scikit-learn Pipeline
        Fitted pipeline.
    """
    # Google Storage Client
    storage_client = storage.Client()
    bucket = storage_client.bucket(bucket_name)
    blob = bucket.blob(source_blob_name)
    pickle_in = blob.download_as_bytes()
    # Model as pickle
    model = pickle.loads(pickle_in)
    return model
Example #16
0
def thread(s):
    client_socket, address = s.accept()
    print(f"[+] {address} is connected.")
    received = pickle.loads(client_socket.recv(10240))
    filename = received["filename"]
    filesize = received["filesize"]
    filetype = received["filetype"]
    filehash = received["filehash"]
    fileaddr = received["fileaddr"]

    # filename, filesize, filetype, filehash, fileaddr = received.split(SEPARATOR)
    print(filetype)
    print(fileaddr)
    if filetype == "temp":
        filename = os.path.basename(settings.TEMP_STORAGE_PATH + filename)
    else:
        filename = os.path.basename(settings.STORAGE_PATH + filename)
    filesize = int(filesize)

    with open(filename, "wb") as f:
        while True:
            bytes_read = client_socket.recv(BUFFER_SIZE)
            if not bytes_read:
                break
            f.write(bytes_read)

    if filetype == "temp":
        # split and broadcast
        # No. of splits to be made --> n
        print(fileaddr)
        key = file_split(filename)[0]
        val = file_split(filename)[1]
        file_send(key, filehash, fileaddr, filename, val)
        client_socket.close()

    else:
        client_socket.close()
Example #17
0
    def device_deserialize(cls, header, frames):
        """Perform device-side deserialization tasks.

        The primary purpose of this method is the creation of device memory
        buffers from host buffers where necessary.

        Parameters
        ----------
        header : dict
            The metadata required to reconstruct the object.
        frames : list
            The Buffers or memoryviews that the object should contain.

        Returns
        -------
        Serializable
            A new instance of `cls` (a subclass of `Serializable`) equivalent
            to the instance that was serialized to produce the header and
            frames.

        :meta private:
        """
        typ = pickle.loads(header["type-serialized"])
        frames = [
            cudf.core.buffer.Buffer(f) if c else memoryview(f)
            for c, f in zip(header["is-cuda"], frames)
        ]
        assert all(
            (type(f._owner) is rmm.DeviceBuffer)
            if c
            else (type(f) is memoryview)
            for c, f in zip(header["is-cuda"], frames)
        )
        obj = typ.deserialize(header, frames)

        return obj
Example #18
0
def test_pickle_index():
    nelem = 10
    idx = GenericIndex(np.arange(nelem), name="a")
    pickled = pickle.dumps(idx)
    out = pickle.loads(pickled)
    assert idx == out
Example #19
0
def assert_frame_picklable(df):
    serialbytes = pickle.dumps(df)
    loaded = pickle.loads(serialbytes)
    assert_eq(loaded, df)
# import pickle

import pickle5 as pickle

pb = pickle.PickleBuffer(b"foo")
data = pickle.dumps(pb, protocol=5)
assert pickle.loads(data) == b"foo"
Example #21
0
import pickle5 as pickle
import socket
import struct

HEADER_SIZE = 4
HOST = "127.0.0.1"
PORT = 12001


def receive(nb_bytes, conn):
    # Ensure that exactly the desired amount of bytes is received
    received = bytearray()
    while len(received) < nb_bytes:
        received += conn.recv(nb_bytes - len(received))

    return received


s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
s.bind((HOST, PORT))
s.listen(1)
connection, address = s.accept()

while True:
    # receive header
    header = receive(HEADER_SIZE, connection)
    data_size = struct.unpack(">i", header)[0]
    # receive data
    data = receive(data_size, connection)
    print(pickle.loads(data))
Example #22
0
def read_vantage_pts_from_blob_container():
	blob_client = azure.storage.blob.BlobClient.from_connection_string(conn_str="my_conn_str", container_name="vantage-pts-container", blob_name="vantage_pts_blob.pickle")
	blob_data = blob_client.download_blob()
	return pickle.loads( blob_data.readall() )
Example #23
0
    read_sockets, write_sockets, error_sockets = select.select(
        CONNECTION_LIST, [], [])

    for sock in read_sockets:

        #new connection
        if sock == server_socket:
            sockfd, addr = server_socket.accept()
            CONNECTION_LIST.append(sockfd)
            print("Client (%s, %s) connected" % addr)

        #incoming message from client
        else:
            try:
                data = sock.recv(RECV_BUFFER)
                data = pickle.loads(data)
                print(data)
                print(type(data))
                #print('received data from [%s:%s]: ' % addr + data)
                sock.send('connected'.encode())
                sock.close()
                CONNECTION_LIST.remove(sock)

                modWiFiConfig(str(data['wifi_name']), str(data['wifi_pass']))
                print("Wifi Added")
                modAccessConfig(str(data['device_name']), str(data['wak']),
                                str(data['e']), str(data['p']))
                print("Access Added")

                config_wifi_dhcpcd = Popen(
                    "sudo cp /etc/dhcpcd_WiFi.conf /etc/dhcpcd.conf",
Example #24
0
 def loads(self, buf, **kwds):
     return pickle.loads(buf, **kwds)
Example #25
0
 def recv(self):
     self._check_closed()
     self._check_readable()
     buf = self.recv_bytes()
     return pickle.loads(buf)
Example #26
0
def to_obj(data: bytes):
    return pickle.loads(data)
Example #27
0
File: core.py Project: edgar87/mars
 def deserialize(self, header: Dict, buffers: List):
     obj_type = self.obj_type
     if 'obj_type' in header:
         obj_type = pickle.loads(header['obj_type'])
     return obj_type(self._iter_deserial(header['headers'], buffers))
Example #28
0
File: core.py Project: edgar87/mars
def unpickle_buffers(buffers):
    return pickle.loads(buffers[0], buffers=buffers[1:])