fig_x, fig_y = JupyterPlots() prefix = 'data/' roundoff = 5e-6 fp = int(sys.argv[1]) fdump = prefix + f'dump_{fp}.lammpstrj' if os.path.isfile(fdump + '.pkl'): dumpdata = load_obj(fdump, pstatus=True) else: duf = DumpFile(fdump, voronoi_flag=False, cg_flag=False) dumpdata = duf.read_dump() save_obj(dumpdata, fdump, pstatus=True) fig, axarr = plt.subplots(6, sharex=True, figsize=[fig_x, fig_y * 6]) N = len(dumpdata) ncount = N atom_num = 2 fxs = np.empty([ncount], float) fys = np.empty([ncount], float) xs = np.empty([ncount], float) ys = np.empty([ncount], float) muxs = np.empty([ncount], float) muys = np.empty([ncount], float) for i, data in enumerate(dumpdata[:ncount + 1]):
else: Ds = np.empty([len(rhos)], float) Derrs = np.empty([len(rhos)], float) for j, rho in enumerate(rhos): flog = prefix + f'log_{fp}_{rho}.lammps.log' ll = LogLoader(flog, remove_chunk=0, merge_data=True) ts = ll.data['Step'] MSD = ll.data['c_mymsdd[4]'] Ds[j], Derrs[j], yint = thermo.compute_Deff(ts, MSD) save_obj([Ds, Derrs], pkl_name, pstatus=True) print(Ds, Derrs) print(thermo.ideal_Deff(fp)) ax.errorbar(rhos, Ds / thermo.ideal_Deff(fp), yerr=Derrs / thermo.ideal_Deff(fp), fmt='-o', color=colors[i], label=rf'$f^P={fp}$') ax.set_ylabel(r'$D_{\mathrm{eff}}$') ax.set_xlabel(r'$\rho$') ax.set_yscale('log') #ax.set_xscale('log') ax.legend()
Ps = np.empty([len(rhos)], float) Perrs = np.empty([len(rhos)], float) for j, rho in enumerate(rhos): flog = prefix + f'log_{fp}_{rho}.lammps.log' ll = LogLoader(flog, remove_chunk=0, merge_data=True) ts = ll.data['Step'] Press = ll.data['c_press'] P_cuts = Press[ts > tcut] Ps[j] = np.mean(P_cuts) Perrs[j] = np.std(P_cuts) / np.sqrt(len(P_cuts)) save_obj([Ps, Perrs], pkl_name, pstatus=True) ax.errorbar(rhos, Ps, yerr=Perrs, fmt='-o', color=colors[i], label=rf'$f^P={fp}$') ax.set_ylabel(r'$P$') ax.set_xlabel(r'$\rho$') #ax.set_yscale('log') #ax.set_xscale('log') ax.legend() fig.subplots_adjust(left=0.25)
rho = sys.argv[1] fps = np.array([0, 1, 5, 10, 20, 40, 60, 80, 100]) load_prefix = 'raw_data/' save_prefix = 'pickled_data/' for fp in fps: fname = f'dump_{fp}_{rho}.lammpstrj' dfile = DumpFile(load_prefix + fname) data = dfile.read_dump(pstatus=True, min_step=1000000) save_obj(data, save_prefix + fname) ret_o = {} calculate_items(ret_o, data, min_neigh=4, cutoff=1.5, MAXnb=100, nbins=2000, nbinsq=50, Pe=10, rho_0=0.60) dc_name = save_prefix + f'ret_o_{fp}_{rho}' save_obj(ret_o, dc_name)