def parts_transform(patches_directory, phase, num_parts): patches_all, labels_all = pickling.unpickle_from_file(patches_directory + phase + '/' + str(0) + '.pkl') for i in range(1, num_parts): print('Parts:', i) patches, labels = pickling.unpickle_from_file(patches_directory + phase + '/' + str(0) + '.pkl') patches_all = np.append(patches_all, patches, axis=0) labels_all = np.append(labels_all, labels, axis=0) patches_all = patches_all[labels_all != 0] labels_ALL = labels_all[labels_all != 0] labels_ALL = labels_ALL - 1 patches_all = np.expand_dims(patches_all, axis=1) patches_all = patches_all[:, :, ::2, ::2].copy() patches_all = patches_all[:, :, ::2, ::2].copy() print(patches_all.shape, labels_ALL.shape) #return np.array([x_0, x_1]) return patches_all, labels_ALL
def small_mammogram_loading(patches_directory, phase, num_parts, resize=0): all_views = ['L-CC', 'L-MLO', 'L-CC', 'R-MLO'] patches_all_by_view = dict.fromkeys(all_views) labels_all_by_view = dict.fromkeys(all_views) patches, labels, view = pickling.unpickle_from_file(patches_directory + phase + '/' + str(0) + '.pkl') labels = np.array([breast_data.data.map_label(label) for label in labels]) patches = patches.astype(np.float32) patches = patches.transpose(0, 2, 3, 1) patches_all_by_view[view[0]] = patches labels_all_by_view[view[0]] = labels for i in range(1, num_parts): print('Parts:', i) patches, labels, view = pickling.unpickle_from_file(patches_directory + phase + '/' + str(0) + '.pkl') labels = np.array( [breast_data.data.map_label(label) for label in labels]) #print(labels.shape, patches.shape) patches = patches.astype(np.float32) patches = patches.transpose(0, 2, 3, 1) j = 0 while i < resize: patches = patches[:, ::2, ::2, :].copy() j += 1 patches_all_by_view[view[0]] = np.append(patches_all_by_view[view[0]], patches, axis=0) labels_all_by_view[view[0]] = np.append(labels_all_by_view[view[0]], labels, axis=0) result = [] for view in all_views: if labels_all_by_view[view] != None: for label in [0, 1, 2]: result.append(patches_all_by_view[view][ labels_all_by_view[view] == label]) result = np.array(result) return result
def small_mammogram_loading(patches_directory, phase, num_parts): patches_all, labels_all, view = pickling.unpickle_from_file( patches_directory + phase + '/' + str(0) + '.pkl') for i in range(1, num_parts): print('Parts:', i) patches, labels, view = pickling.unpickle_from_file(patches_directory + phase + '/' + str(0) + '.pkl') patches_all = np.append(patches_all, patches, axis=0) labels_all = np.append(labels_all, labels, axis=0) patches_all = patches_all.astype(np.float32) patches_all = patches_all[:, :, ::2, ::2].copy() patches_all = patches_all[:, :, ::2, ::2].copy() print(patches_all.shape, labels_all.shape) #return np.array([x_0, x_1]) return patches_all, labels_all
def parts_combination(patches_directory, phase, num_parts): x, _ = pickling.unpickle_from_file(patches_directory + phase + '/' + str(0) + '.pkl') x_0, x_1, x_2, x_3 = x[0], x[1], x[2], x[3] y = [] x = np.append(x_1, x_2, axis=0) x = np.append(x, x_3, axis=0) y.append([0] * x_1.shape[0]) y.append([1] * x_2.shape[0]) y.append([2] * x_3.shape[0]) for i in range(1, num_parts): print('Parts:', i) patches, _ = pickling.unpickle_from_file(patches_directory + phase + '/' + str(i) + '.pkl') if patches[0].shape[0] != 0: x_0 = np.append(x_0, patches[0], axis=0) if patches[1].shape[0] != 0: x = np.append(x, patches[1], axis=0) y.append([0] * patches[1].shape[0]) if patches[2].shape[0] != 0: x = np.append(x, patches[2], axis=0) y.append([1] * patches[2].shape[0]) if patches[3].shape[0] != 0: x = np.append(x, patches[3], axis=0) y.append([2] * patches[3].shape[0]) y = np.array(y) x = np.expand_dims(x, axis=1) x = x[:, ::2, ::2, :].copy() #return np.array([x_0, x_1]) return x, y
def parts_combination(patches_directory, phase, num_parts, resize=0): x, _ = pickling.unpickle_from_file(patches_directory + phase + '/' + str(0) + '.pkl') #x_0, x_1, x_2, x_3 = x[0], x[1], x[2], x[3] x_0, x_1 = x[0], x[1] for i in range(1, num_parts): print('Parts:', i) patches, _ = pickling.unpickle_from_file(patches_directory + phase + '/' + str(i) + '.pkl') if patches[0].shape[0] != 0: x_0 = np.append(x_0, patches[0], axis=0) if patches[1].shape[0] != 0: x_1 = np.append(x_1, patches[1], axis=0) # if patches[2].shape[0]!=0: # x_2 = np.append(x_2, patches[2], axis = 0) # if patches[3].shape[0]!=0: # x_3 = np.append(x_3, patches[3], axis = 0) x_0 = np.expand_dims(x_0, axis=4) x_1 = np.expand_dims(x_1, axis=4) j = 0 while j < resize: x_0 = x_0[:, ::2, ::2, :] x_1 = x_1[:, ::2, ::2, :] j += 1 # x_2 = np.expand_dims(x_2, axis=4) # x_3 = np.expand_dims(x_3, axis=4) return np.array([x_0, x_1])