Example #1
0
def picture_colors(original_list, p_holds_original, mode_lecture):

    label = 0
    last_category = 0

    liste = ["0", "1", "2", "3", "4", "5", "6", "7", "8", "9", "a",
             "b", "c", "d", "e", "f", "g", "h", "i", "j", "k",
             "l", "m", "n", "o", "p", "q", "r", "s", "t", "u",
             "v"]





    csv_write()


    for i in original_list:
        #open
        picture = str(p_holds_original) + str(i)
        img = open_picture(picture)
        img = cv2.resize(img, (100, 100))

        #label
        category = int(i[4:-6])
        print(category)
        if category != last_category:
            label += 1
            liste[label]
        else:
            label = label
            liste[label]

        last_category = category


        gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
        _, thresh = cv2.threshold(gray, 0, 255, 0)
        thresh = reshape_thresh(thresh)

        data = to_list(thresh)
        print(data)

        write_data_into_csv(data, liste[label])




##        #display
##        if mode_lecture == "0":
##            show_picture("image", img, 0, "")
##        elif mode_lecture == "1":
##            show_picture("image", img, 1, "")
##        elif mode_lecture == "2":
##            pass


        print(liste[label])
def first_operation_picture(path_picture):

    #Resize picture to 500x500.
    img = cv2.resize(open_picture(path_picture), (500, 500))
    #show_picture("img", img, 0, "")

    #We delete the ground and the roof.
    height, width, channel = img.shape
    img = img[70:height - 50, 0:width]
    #show_picture("picture_crop", img, 0, "")

    return img
Example #3
0
def main_recognition():

    #Create list of folder contains
    original_list = os.listdir(p_holds_original)

    for i in original_list:
        print("category :", i[4:-6], "name:", i)

        picture = str(p_holds_original) + str(i)

        img = open_picture(picture)
        img = cv2.resize(img, (100, 100))

        take_features(img)

        show_picture("image", img, 0, "")
Example #4
0
MG = cv2.ADAPTIVE_THRESH_GAUSSIAN_C
T = cv2.THRESH_BINARY

R = cv2.RETR_TREE
P = cv2.CHAIN_APPROX_NONE




        
for i in liste:
    if i[:4] == "crop" and i != "crop_section.py":

        print(i)
        
        img = open_picture(i)
        img = cv2.resize(img, (100, 100))
        show_picture("img", img, 0, "")


        height, width, channel = img.shape

        img = background(img, width, height)


        color, dico = main_color_background(img)
        print(color)



Example #5
0
##cv2.namedWindow("Tracking")
##cv2.createTrackbar("LH", "Tracking", 0, 255, nothing)
##cv2.createTrackbar("LS", "Tracking", 0, 255, nothing)
##cv2.createTrackbar("LV", "Tracking", 0, 255, nothing)
##cv2.createTrackbar("UH", "Tracking", 255, 255, nothing)
##cv2.createTrackbar("US", "Tracking", 255, 255, nothing)
##cv2.createTrackbar("UV", "Tracking", 255, 255, nothing)

liste = os.listdir(wp)
R = cv2.RETR_TREE
P = cv2.CHAIN_APPROX_NONE

position = []
for i in liste:

    img = open_picture(wp + i)
    img = cv2.resize(img, (500, 500))
    height, width, channel = img.shape
    img = img[70:height - 50, 0:width]

    copy = img.copy()

    show_picture("img", img, 0, "")
    hsv = cv2.cvtColor(img, cv2.COLOR_BGR2HSV)

    #haut
    l_b = np.array([0, 0, 0])
    u_b = np.array([75, 255, 255])
    mask = cv2.inRange(hsv, l_b, u_b)

    blanck = blanck_picture(img)