Example #1
0
    def compute(self, x_des, M_des, q0):

        self.frame_id = self.model.getFrameId('tool0')
        q_i = q0

        H_des = pin.SE3(M_des, x_des)

        for i in range(self.n):

            self.robot.computeAllTerms(q_i, np.zeros(6))
            H = self.robot.framePlacement(q_i, self.frame_id, False)

            dH = H_des.actInv(H)
            error = pin.log(dH).vector

            if (norm(error) < self.eps):
                self.success = True
                break

            # J = self.robot.frameJacobian(q_i, self.frame_id, False)
            J = pin.computeJointJacobian(self.model, self.data, q_i, 6)
            v = -J.T.dot(solve(J.dot(J.T) + self.damp * np.eye(6), error))
            q_i = pin.integrate(self.model, q_i, v * self.DT)

        return q_i
Example #2
0
File: ik.py Project: thomasfla/labs
def ik(robot,oMdes, JOINT_ID,eps = 1e-4):
    q = robot.q0.copy()
    IT_MAX = 500
    DT     = 1e-1
    damp   = 1e-12
    i=0
    success = False
    while True:
        pinocchio.forwardKinematics(robot.model,robot.data,q)
        dMi = oMdes.actInv(robot.data.oMi[JOINT_ID])
        err = pinocchio.log(dMi).vector
        if norm(err) < eps:
            success = True
            break
        if i >= IT_MAX:
            success = False
            break
        J = pinocchio.computeJointJacobian(robot.model,robot.data,q,JOINT_ID)
        v = - J.T.dot(solve(J.dot(J.T) + damp * np.eye(6), err))
        q = pinocchio.integrate(robot.model,q,v*DT)
        i += 1
    if not success:
        #raise( Exception('ik did not converged') )
        q[:] = np.nan
    if ((q < robot.model.lowerPositionLimit).any() or
    (q > robot.model.upperPositionLimit).any()):
        #Violate joint limits
        q[:] = np.nan
    return (q)
Example #3
0
    def solve(self, M_des, robot, joint_id, q=None):
        """ Inverse kinematics for specified joint (joint_id) and desired pose M_des (array 4x4)
        NOTE The code below is adopted from here (01.03.2020): 
        https://gepettoweb.laas.fr/doc/stack-of-tasks/pinocchio/master/doxygen-html/md_doc_b-examples_i-inverse-kinematics.html
        """

        oMdes = pinocchio.SE3(M_des[:3, :3], M_des[:3, 3])

        if np.all(q == None): q = pinocchio.neutral(robot.model)

        i = 0
        iter_resample = 0
        while True:
            # forward
            pinocchio.forwardKinematics(robot.model, robot.data, q)

            # error between desired pose and the current one
            dMi = oMdes.actInv(robot.data.oMi[joint_id])
            err = pinocchio.log(dMi).vector

            # Termination criteria
            if norm(err) < self.inv_kin_sol_params.eps:
                success = True
                break
            if i >= self.inv_kin_sol_params.max_iter:
                if iter_resample <= self.inv_kin_sol_params.max_resample:
                    q = pinocchio.randomConfiguration(robot.model)
                    iter_resample += 1
                    continue
                else:
                    success = False
                    break

            # Jacobian
            J = pinocchio.computeJointJacobian(robot.model, robot.data, q,
                                               joint_id)

            # P controller (?)
            # v* =~ A * e
            v = -J.T.dot(
                solve(
                    J.dot(J.T) + self.inv_kin_sol_params.damp * np.eye(6),
                    err))

            # integrate (in this case only sum)
            q = pinocchio.integrate(robot.model, q,
                                    v * self.inv_kin_sol_params.dt)

            i += 1

        if not success: q = pinocchio.neutral(robot.model)
        q_arr = np.squeeze(np.array(q))
        q_arr = np.mod(np.abs(q_arr), 2 * np.pi) * np.sign(q_arr)
        mask = np.abs(q_arr) > np.pi
        # If angle abs(q) is larger than pi, represent angle as the shorter angle inv_sign(q) * (2*pi - abs(q))
        # This is to avoid conflicting with angle limits.
        q_arr[mask] = (-1) * np.sign(
            q_arr[mask]) * (2 * np.pi - np.abs(q_arr[mask]))
        return success, q_arr
Example #4
0
    def inverse_kinematics(self, x, y, z):
        """Calculate the joint values for a desired cartesian position"""
        model, collision_model, visual_model = pinocchio.buildModelsFromUrdf(
            "/home/gabriele/catkin_ws/src/abel_move/scripts/abel_arms_full.urdf"
        )
        data, collision_data, visual_data = pinocchio.createDatas(
            model, collision_model, visual_model)

        JOINT_ID = 5
        oMdes = pinocchio.SE3(np.eye(3), np.array([x, y, x]))

        q = np.array(abel.sort_joints()[5:])
        eps = 1e-1
        IT_MAX = 1000
        DT = 1e-4
        damp = 1e-4

        i = 0
        while True:
            pinocchio.forwardKinematics(model, data, q)
            dMi = oMdes.actInv(data.oMi[JOINT_ID])
            err = pinocchio.log(dMi).vector
            if norm(err) < eps:
                success = True
                break
            if i >= IT_MAX:
                success = False
                break
            J = pinocchio.computeJointJacobian(model, data, q, JOINT_ID)
            v = -J.T.dot(solve(J.dot(J.T) + damp * np.eye(6), err))
            q = pinocchio.integrate(model, q, v * DT)
            if not i % 10:
                print('%d: error = %s' % (i, err.T))
            i += 1

        if success:
            print("Convergence achieved!")
        else:
            print(
                "\nWarning: the iterative algorithm has not reached convergence to the desired precision"
            )

        print('\nresult: %s' % q.flatten().tolist())
        print('\nfinal error: %s' % err.T)

        point = JointTrajectoryPoint()
        point.positions = [
            0, 0, 0, 0, 0, q[0], q[1], q[2], q[3], q[4], q[5], q[6], q[7],
            q[8], q[9]
        ]

        abel.move_all_joints(point)

        self.direct_kinematics()
Example #5
0
 def calcDiff(self, q):
     Jp = pinv(
         pin.computeJointJacobian(robot.model, robot.data, q,
                                  self.jointIndex))
     res = np.zeros(robot.model.nv)
     v0 = np.zeros(robot.model.nv)
     for k in range(6):
         pin.computeForwardKinematicsDerivatives(robot.model, robot.data, q,
                                                 Jp[:, k], v0)
         JqJpk = pin.getJointVelocityDerivatives(robot.model, robot.data,
                                                 self.jointIndex,
                                                 pin.LOCAL)[0]
         res += JqJpk[k, :]
     res *= self.calc(q)
     return res
Example #6
0
    def inverse_kinematics(self, q, x_des, joint_id):

        if (joint_id == 4):
            joint_id = 0
        elif (joint_id == 8):
            joint_id = 1
        elif (joint_id == 12):
            joint_id = 2

        q0 = self.env.pinocchio_utils.inverse_kinematics(joint_id, x_des, q)
        if (q0 is not None):
            return q0

        q = self.trafo_q(q)
        eps = 1e-3
        DT = 0.04
        damp = 1e-6
        JOINT_ID = joint_id  # 3
        i = 0
        pin.forwardKinematics(self.model, self.data, q)

        while True:
            pin.forwardKinematics(self.model, self.data, q)

            x = self.data.oMi[JOINT_ID].translation
            R = self.data.oMi[JOINT_ID].rotation

            a = (np.reshape((x - x_des), (3, 1)))
            err = np.matmul(R.T, a)

            if norm(err) < eps:
                success = True
                return self.inv_trafo_q(q)
                # return q
            J = pin.computeJointJacobian(self.model, self.data, q,
                                         JOINT_ID)[:3, :]
            v = -J.T.dot(solve(J.dot(J.T) + damp * np.eye(3), err))
            q = pin.integrate(self.model, q, v * DT)

            i += 1
            if (i > 1000):
                # return result latest after 1000 iterations:
                return self.inv_trafo_q(q)
                # return q
        return q
Example #7
0
    def setUp(self):
        self.model = pin.buildSampleModelHumanoidRandom()
        self.data = self.model.createData()

        qmax = np.full((self.model.nq, 1), np.pi)
        self.q = pin.randomConfiguration(self.model, -qmax, qmax)
        self.v = rand(self.model.nv)
        self.tau = rand(self.model.nv)

        self.v0 = zero(self.model.nv)
        self.tau0 = zero(self.model.nv)
        self.tolerance = 1e-9

        # we compute J on a different self.data
        self.J = pin.computeJointJacobian(self.model, self.model.createData(),
                                          self.q,
                                          self.model.getJointId('lleg6_joint'))
        self.gamma = zero(6)
Example #8
0
IT_MAX = 1000
DT = 1e-4
damp = 1e-12

i = 0
while True:
    pinocchio.forwardKinematics(model, data, q)
    dMi = oMdes.actInv(data.oMi[JOINT_ID])
    err = pinocchio.log(dMi).vector
    if norm(err) < eps:
        success = True
        break
    if i >= IT_MAX:
        success = False
        break
    J = pinocchio.computeJointJacobian(model, data, q, JOINT_ID)
    v = -J.T.dot(solve(J.dot(J.T) + damp * np.eye(6), err))
    q = pinocchio.integrate(model, q, v * DT)
    if not i % 10:
        print('%d: error = %s' % (i, err.T))
    i += 1

if success:
    print("Convergence achieved!")
else:
    print(
        "\nWarning: the iterative algorithm has not reached convergence to the desired precision"
    )

print('\nresult: %s' % q.flatten().tolist())
print('\nfinal error: %s' % err.T)
Example #9
0
 def calc(self, q):
     J = self.J = pin.computeJointJacobian(robot.model, robot.data, q,
                                           self.jointIndex)
     return np.sqrt(det(J @ J.T))
Example #10
0
q = robot.q0

#Compute max contact forces on the X-Z plan
#plt.style.use('_mpl-gallery-nogrid')

# make data with uneven sampling in x
N = 100
x = np.linspace(-0.65, 0.65, N)
z = np.linspace(-1.0, -0.4, N)
F = np.empty([6, N, N])
for ix in range(N):
    print(f"{ix/N *100} %")
    for iz in range(N):
        oMdes = pinocchio.SE3(np.eye(3), np.array([x[ix], 0., z[iz]]))
        q = ik(robot, oMdes, JOINT_ID)
        f_max = np.ones(6) * np.nan
        if not np.isnan(q).any():
            J = pinocchio.computeJointJacobian(robot.model, robot.data, q,
                                               JOINT_ID)
            for axis in range(6):
                c = np.array([0., 0., 0., 0., 0., 0.])
                c[axis] = -1.0
                A_ub = np.vstack([J.T, -J.T])
                b_ub = np.concatenate([tau_max, tau_max])
                f_max[axis] = linprog(c, A_ub=A_ub, b_ub=b_ub).x[axis]
            #robot.display(q)
        F[:, ix, iz] = f_max
np.savez("fmax_talos.npz", F=F, x=x, z=z, N=N)

embed()