def main(): patterns = [ 0x61083282abedbf10, 0xcccccccc55555555, 0x1234abcdf5ba03e7, 0x1234abcdf5ba0132, 0 ] random.seed(7) src = bytearray() src32 = bytearray() src3 = bytearray() for _ in range(512): src += random.choice(patterns).to_bytes(8, byteorder="big") for i in range(1024): #num = (-1 - i) + 2**32 num = 2 * i src32 += num.to_bytes(4, byteorder="big") for _ in range(1024): src3 += random.randint(0, 1024).to_bytes(4, byteorder="big") src64 = bytearray() for i in range(512): #num = (- 1 - i) + 2**64 num = random.randint(1, 10000000) src64 += num.to_bytes(8, byteorder="big") src = src64 compressor = WKCompressor(word_size_bytes=4, dict_size=256, num_low_bits=10, debug=False) wk_compressed = compressor.compress(src) wk_uncompressed = compressor.decompress(wk_compressed) wk_huffman_encoded = huffman.compress(wk_compressed) wk_huffman_decoded = huffman.decompress(wk_huffman_encoded) wk_huffman_uncompressed = compressor.decompress(wk_huffman_decoded) lz_compressed = lzma.compress(src) lz_uncompressed = lzma.decompress(lz_compressed) zlib_compressed = zlib.compress(src, 9) zlib_uncompressed = zlib.decompress(zlib_compressed) bz_compressed = bz2.compress(src) bz_uncompressed = bz2.decompress(bz_compressed) print("LRU Histogram: ", WKCompressor.get_lru_queue_histogram(compressor, wk_compressed)) indices = WKCompressor.get_dict(compressor, wk_compressed) print(len(indices)) print_results("WK", src, wk_compressed, wk_uncompressed) print_results("WK Huffman", src, wk_huffman_encoded, wk_huffman_uncompressed) print_results("lzma", src, lz_compressed, lz_uncompressed) print_results("zlib", src, zlib_compressed, zlib_uncompressed) print_results("bzip2", src, bz_compressed, bz_uncompressed)
def test_search_print_results_should_contain_latest_versions(caplog): """ Test that printed search results contain the latest package versions """ hits = [{ 'name': 'testlib1', 'summary': 'Test library 1.', 'versions': ['1.0.5', '1.0.3'] }, { 'name': 'testlib2', 'summary': 'Test library 1.', 'versions': ['2.0.1', '2.0.3'] }] print_results(hits) log_messages = sorted([r.getMessage() for r in caplog.records()]) assert log_messages[0].startswith('testlib1 (1.0.5)') assert log_messages[1].startswith('testlib2 (2.0.3)')
def test_search_print_results_should_contain_latest_versions(caplog): """ Test that printed search results contain the latest package versions """ hits = [ { 'name': 'testlib1', 'summary': 'Test library 1.', 'versions': ['1.0.5', '1.0.3'] }, { 'name': 'testlib2', 'summary': 'Test library 1.', 'versions': ['2.0.1', '2.0.3'] } ] print_results(hits) log_messages = sorted([r.getMessage() for r in caplog.records()]) assert log_messages[0].startswith('testlib1 (1.0.5)') assert log_messages[1].startswith('testlib2 (2.0.3)')
def test_diffrent_classifiers_on_aras(data_source): ''' Parameters: if data_source = 1, it means load data from aras if data_source = 2, it means load data from sequential aras (first repeat of sensor is considered) if data_source = 3, it means load data from sequential aras (last repeat of sensor is considered) if data_source = 4, it means load data from sequential aras (just occurness of sensor events is considered) if data_source = 5, it means load data from sequential aras (number of occurness of sensor events is considered) ''' names = [ "1-Nearest Neighbors", "2-Nearest Neighbors", "3-Nearest Neighbors", "4-Nearest Neighbors", "5-Nearest Neighbors", #"Linear SVM", #"RBF SVM", #"Poly SVM degree = 3", #"Poly SVM degree = 4", #"Poly SVM degree = 5", #"LinearSVC", #"Gaussian Process", "Decision Tree", "Random Forest", "Neural Net", "AdaBoost", "Naive Bayes", "QDA" ] classifiers = [ KNeighborsClassifier(1), KNeighborsClassifier(2), KNeighborsClassifier(3), KNeighborsClassifier(4), KNeighborsClassifier(5), #SVC(kernel="linear", C=1.0), #SVC(kernel='rbf', gamma=0.7, C=1.0), #SVC(kernel='poly', degree=3, C=1.0), #SVC(kernel='poly', degree=4, C=1.0), #SVC(kernel='poly', degree=5, C=1.0), #LinearSVC(C=1.0), #GaussianProcessClassifier(1.0 * RBF(1.0), warm_start=True), DecisionTreeClassifier(max_depth=5), RandomForestClassifier(max_depth=5, n_estimators=10, max_features=1), MLPClassifier(alpha=1), AdaBoostClassifier(), GaussianNB(), QuadraticDiscriminantAnalysis() ] if data_source == 1: aras = Aras.load_aras(3, isPerson=True) elif data_source == 2: aras = aras_sequentional.load_sequential_aras_first(isPerson=True) elif data_source == 3: aras = aras_sequentional.load_sequential_aras_last(isPerson=True) elif data_source == 4: aras = aras_sequentional.load_sequential_aras_occur(isPerson=True) elif data_source == 5: aras = aras_sequentional.load_sequential_aras_frequency_occur( isPerson=True) data = aras.data target = aras.target #print(len(target)) #for i in range(len(target)): # print(target[i]) # iterate over classifiers for name, clf in zip(names, classifiers): #for i in range (3 , 4):# i indicates number of days start from Day 1 #print("\n\n***************************************************") #print("number of days: " + str(i)) #print("***************************************************") scores = cross_val_score( clf, data, target, cv=10, scoring='f1_macro') ####10-fold cross validation print_results(name, 3, scores.mean())