def main(config="../../config.yaml", namespace=""): # obtain config if isinstance(config, str): config = load_job_config(config) parties = config.parties guest = parties.guest[0] host = parties.host[0] # data sets guest_train_data = {"name": "student_hetero_guest", "namespace": f"experiment{namespace}"} host_train_data = {"name": "student_hetero_host", "namespace": f"experiment{namespace}"} # init pipeline pipeline = PipeLine().set_initiator(role="guest", party_id=guest).set_roles(guest=guest, host=host,) # set data reader and data-io reader_0 = Reader(name="reader_0") reader_0.get_party_instance(role="guest", party_id=guest).component_param(table=guest_train_data) reader_0.get_party_instance(role="host", party_id=host).component_param(table=host_train_data) data_transform_0 = DataTransform(name="data_transform_0") data_transform_0.get_party_instance( role="guest", party_id=guest).component_param( with_label=True, output_format="dense", label_type="float") data_transform_0.get_party_instance(role="host", party_id=host).component_param(with_label=False) # data intersect component intersect_0 = Intersection(name="intersection_0") # secure boost component hetero_secure_boost_0 = HeteroSecureBoost(name="hetero_secure_boost_0", num_trees=3, task_type="regression", objective_param={"objective": "lse"}, encrypt_param={"method": "Paillier"}, tree_param={"max_depth": 3}, validation_freqs=1, cv_param={ "need_cv": True, "n_splits": 5, "shuffle": False, "random_seed": 103 } ) pipeline.add_component(reader_0) pipeline.add_component(data_transform_0, data=Data(data=reader_0.output.data)) pipeline.add_component(intersect_0, data=Data(data=data_transform_0.output.data)) pipeline.add_component(hetero_secure_boost_0, data=Data(train_data=intersect_0.output.data)) pipeline.compile() pipeline.fit() print("fitting hetero secureboost done, result:") print(pipeline.get_component("hetero_secure_boost_0").get_summary())
role="host", party_id=10000).component_param(table=host_train_data) # Data transform provided some preprocessing to the raw data, including extract label, convert data format, # filling missing value and so on. You may refer to the algorithm list doc for more details. data_transform_0 = DataTransform(name="data_transform_0", with_label=True) data_transform_0.get_party_instance( role="host", party_id=10000).component_param(with_label=False) # Perform PSI for hetero-scenario. intersect_0 = Intersection(name="intersection_0") # Define a hetero-secureboost component. The following parameters will be set for all parties involved. hetero_secureboost_0 = HeteroSecureBoost( name="hetero_secureboost_0", num_trees=5, bin_num=16, task_type="classification", objective_param={"objective": "cross_entropy"}, encrypt_param={"method": "paillier"}, tree_param={"max_depth": 3}) # To show the evaluation result, an "Evaluation" component is needed. evaluation_0 = Evaluation(name="evaluation_0", eval_type="binary") # add components to pipeline, in order of task execution # The components are connected by indicating upstream data output as their input. # Typically, a feature engineering component will indicate input data as "data" while # the modeling component will use "train_data". Please check out carefully of the difference # between hetero_secureboost_0 input and other components below. # Here we are just showing a simple example, for more details of other components, please check # out the examples in "example/pipeline/{component you are interested in} pipeline.add_component(reader_0)\
def main(config="../../config.yaml", namespace=""): # obtain config if isinstance(config, str): config = load_job_config(config) parties = config.parties guest = parties.guest[0] host = parties.host[0] # data sets guest_train_data = { "name": "vehicle_scale_hetero_guest", "namespace": f"experiment{namespace}" } host_train_data = { "name": "vehicle_scale_hetero_host", "namespace": f"experiment{namespace}" } guest_validate_data = { "name": "vehicle_scale_hetero_guest", "namespace": f"experiment{namespace}" } host_validate_data = { "name": "vehicle_scale_hetero_host", "namespace": f"experiment{namespace}" } # init pipeline pipeline = PipeLine().set_initiator(role="guest", party_id=guest).set_roles( guest=guest, host=host, ) # set data reader and data-io reader_0, reader_1 = Reader(name="reader_0"), Reader(name="reader_1") reader_0.get_party_instance( role="guest", party_id=guest).component_param(table=guest_train_data) reader_0.get_party_instance( role="host", party_id=host).component_param(table=host_train_data) reader_1.get_party_instance( role="guest", party_id=guest).component_param(table=guest_validate_data) reader_1.get_party_instance( role="host", party_id=host).component_param(table=host_validate_data) data_transform_0, data_transform_1 = DataTransform( name="data_transform_0"), DataTransform(name="data_transform_1") data_transform_0.get_party_instance( role="guest", party_id=guest).component_param(with_label=True, output_format="dense") data_transform_0.get_party_instance( role="host", party_id=host).component_param(with_label=False) data_transform_1.get_party_instance( role="guest", party_id=guest).component_param(with_label=True, output_format="dense") data_transform_1.get_party_instance( role="host", party_id=host).component_param(with_label=False) # data intersect component intersect_0 = Intersection(name="intersection_0") intersect_1 = Intersection(name="intersection_1") # secure boost component hetero_secure_boost_0 = HeteroSecureBoost( name="hetero_secure_boost_0", num_trees=3, task_type="classification", objective_param={"objective": "cross_entropy"}, encrypt_param={"method": "Paillier"}, tree_param={"max_depth": 3}, validation_freqs=1, boosting_strategy='mix') # evaluation component evaluation_0 = Evaluation(name="evaluation_0", eval_type="multi") pipeline.add_component(reader_0) pipeline.add_component(reader_1) pipeline.add_component(data_transform_0, data=Data(data=reader_0.output.data)) pipeline.add_component(data_transform_1, data=Data(data=reader_1.output.data), model=Model(data_transform_0.output.model)) pipeline.add_component(intersect_0, data=Data(data=data_transform_0.output.data)) pipeline.add_component(intersect_1, data=Data(data=data_transform_1.output.data)) pipeline.add_component(hetero_secure_boost_0, data=Data(train_data=intersect_0.output.data, validate_data=intersect_1.output.data)) pipeline.add_component(evaluation_0, data=Data(data=hetero_secure_boost_0.output.data)) pipeline.compile() pipeline.fit() print("fitting hetero secureboost done, result:") print(pipeline.get_component("hetero_secure_boost_0").get_summary())
def main(config="../../config.yaml", namespace=""): # obtain config if isinstance(config, str): config = load_job_config(config) parties = config.parties guest = parties.guest[0] host = parties.host[0] # data sets guest_train_data = { "name": "breast_hetero_guest", "namespace": f"experiment{namespace}" } host_train_data = { "name": "breast_hetero_host", "namespace": f"experiment{namespace}" } guest_validate_data = { "name": "breast_hetero_guest", "namespace": f"experiment{namespace}" } host_validate_data = { "name": "breast_hetero_host", "namespace": f"experiment{namespace}" } # init pipeline pipeline = PipeLine().set_initiator(role="guest", party_id=guest).set_roles( guest=guest, host=host, ) # set data reader and data-io reader_0, reader_1 = Reader(name="reader_0"), Reader(name="reader_1") reader_0.get_party_instance( role="guest", party_id=guest).component_param(table=guest_train_data) reader_0.get_party_instance( role="host", party_id=host).component_param(table=host_train_data) reader_1.get_party_instance( role="guest", party_id=guest).component_param(table=guest_validate_data) reader_1.get_party_instance( role="host", party_id=host).component_param(table=host_validate_data) data_transform_0, data_transform_1 = DataTransform( name="data_transform_0"), DataTransform(name="data_transform_1") data_transform_0.get_party_instance( role="guest", party_id=guest).component_param(with_label=True, output_format="dense") data_transform_0.get_party_instance( role="host", party_id=host).component_param(with_label=False) data_transform_1.get_party_instance( role="guest", party_id=guest).component_param(with_label=True, output_format="dense") data_transform_1.get_party_instance( role="host", party_id=host).component_param(with_label=False) # data intersect component intersect_0 = Intersection(name="intersection_0") intersect_1 = Intersection(name="intersection_1") # secure boost component hetero_secure_boost_0 = HeteroSecureBoost( name="hetero_secure_boost_0", num_trees=3, task_type="classification", objective_param={"objective": "cross_entropy"}, encrypt_param={"method": "paillier"}, tree_param={"max_depth": 3}, validation_freqs=1) # evaluation component evaluation_0 = Evaluation(name="evaluation_0", eval_type="binary") evaluation_1 = Evaluation(name="evaluation_1", eval_type="binary") # transformer transformer_0 = SBTTransformer(name='sbt_transformer_0', dense_format=True) # local baseline def get_local_baseline(idx): return LocalBaseline(name="local_baseline_{}".format(idx), model_name="LogisticRegression", model_opts={ "penalty": "l2", "tol": 0.0001, "C": 1.0, "fit_intercept": True, "solver": "lbfgs", "max_iter": 50 }) local_baseline_0 = get_local_baseline(0) local_baseline_0.get_party_instance( role='guest', party_id=guest).component_param(need_run=True) local_baseline_0.get_party_instance( role='host', party_id=host).component_param(need_run=False) local_baseline_1 = get_local_baseline(1) local_baseline_1.get_party_instance( role='guest', party_id=guest).component_param(need_run=True) local_baseline_1.get_party_instance( role='host', party_id=host).component_param(need_run=False) evaluation_1.get_party_instance( role='host', party_id=host).component_param(need_run=False) pipeline.add_component(reader_0) pipeline.add_component(reader_1) pipeline.add_component(data_transform_0, data=Data(data=reader_0.output.data)) pipeline.add_component(data_transform_1, data=Data(data=reader_1.output.data), model=Model(data_transform_0.output.model)) pipeline.add_component(intersect_0, data=Data(data=data_transform_0.output.data)) pipeline.add_component(intersect_1, data=Data(data=data_transform_1.output.data)) pipeline.add_component(hetero_secure_boost_0, data=Data(train_data=intersect_0.output.data, validate_data=intersect_1.output.data)) pipeline.add_component( transformer_0, data=Data(data=intersect_0.output.data), model=Model(isometric_model=hetero_secure_boost_0.output.model)) pipeline.add_component(local_baseline_0, data=Data(data=transformer_0.output.data)) pipeline.add_component(local_baseline_1, data=Data(data=intersect_0.output.data)) pipeline.add_component(evaluation_0, data=Data(data=local_baseline_0.output.data)) pipeline.add_component(evaluation_1, data=Data(data=local_baseline_1.output.data)) pipeline.compile() pipeline.fit()
def make_normal_dsl(config, namespace, selection_param, is_multi_host=False, host_dense_output=True, **kwargs): parties = config.parties guest = parties.guest[0] if is_multi_host: hosts = parties.host else: hosts = parties.host[0] guest_train_data = { "name": "breast_hetero_guest", "namespace": f"experiment{namespace}" } host_train_data = { "name": "breast_hetero_host", "namespace": f"experiment{namespace}" } guest_eval_data = { "name": "breast_hetero_guest", "namespace": f"experiment{namespace}" } host_eval_data = { "name": "breast_hetero_host", "namespace": f"experiment{namespace}" } # initialize pipeline pipeline = PipeLine() # set job initiator pipeline.set_initiator(role='guest', party_id=guest) # set participants information pipeline.set_roles(guest=guest, host=hosts) # define Reader components to read in data reader_0 = Reader(name="reader_0") # configure Reader for guest reader_0.get_party_instance( role='guest', party_id=guest).component_param(table=guest_train_data) # configure Reader for host reader_0.get_party_instance( role='host', party_id=hosts).component_param(table=host_train_data) # define DataTransform components data_transform_0 = DataTransform( name="data_transform_0") # start component numbering at 0 # get DataTransform party instance of guest data_transform_0_guest_party_instance = data_transform_0.get_party_instance( role='guest', party_id=guest) # configure DataTransform for guest data_transform_0_guest_party_instance.component_param( with_label=True, output_format="dense") # get and configure DataTransform party instance of host data_transform_0.get_party_instance( role='host', party_id=hosts).component_param(with_label=False) # define Intersection components intersection_0 = Intersection(name="intersection_0") pipeline.add_component(reader_0) pipeline.add_component(data_transform_0, data=Data(data=reader_0.output.data)) pipeline.add_component(intersection_0, data=Data(data=data_transform_0.output.data)) last_cpn = intersection_0 selection_include_model = [] if 'binning_param' in kwargs: hetero_feature_binning_0 = HeteroFeatureBinning( **kwargs['binning_param']) pipeline.add_component(hetero_feature_binning_0, data=Data(data=last_cpn.output.data)) selection_include_model.append(hetero_feature_binning_0) # last_cpn = hetero_feature_binning_0 if 'statistic_param' in kwargs: # print(f"param: {kwargs['statistic_param']}, kwargs: {kwargs}") statistic_0 = DataStatistics(**kwargs['statistic_param']) pipeline.add_component(statistic_0, data=Data(data=last_cpn.output.data)) # last_cpn = statistic_0 selection_include_model.append(statistic_0) if 'psi_param' in kwargs: reader_1 = Reader(name="reader_1") reader_1.get_party_instance( role='guest', party_id=guest).component_param(table=guest_eval_data) reader_1.get_party_instance( role='host', party_id=hosts).component_param(table=host_eval_data) data_transform_1 = DataTransform(name="data_transform_1") intersection_1 = Intersection(name="intersection_1") pipeline.add_component(reader_1) pipeline.add_component(data_transform_1, data=Data(data=reader_1.output.data), model=Model(data_transform_0.output.model)) pipeline.add_component(intersection_1, data=Data(data=data_transform_1.output.data)) psi_0 = PSI(**kwargs['psi_param']) pipeline.add_component(psi_0, data=Data( train_data=intersection_0.output.data, validate_data=intersection_1.output.data)) # last_cpn = statistic_0 selection_include_model.append(psi_0) if 'sbt_param' in kwargs: secureboost_0 = HeteroSecureBoost(**kwargs['sbt_param']) pipeline.add_component( secureboost_0, data=Data(train_data=intersection_0.output.data)) selection_include_model.append(secureboost_0) if "fast_sbt_param" in kwargs: fast_sbt_0 = HeteroFastSecureBoost(**kwargs['fast_sbt_param']) pipeline.add_component( fast_sbt_0, data=Data(train_data=intersection_0.output.data)) selection_include_model.append(fast_sbt_0) hetero_feature_selection_0 = HeteroFeatureSelection(**selection_param) pipeline.add_component( hetero_feature_selection_0, data=Data(data=intersection_0.output.data), model=Model( isometric_model=[x.output.model for x in selection_include_model])) # compile pipeline once finished adding modules, this step will form conf and dsl files for running job pipeline.compile() return pipeline
def main(config="../../config.yaml", namespace=""): # obtain config if isinstance(config, str): config = load_job_config(config) parties = config.parties guest = parties.guest[0] host = parties.host[0] arbiter = parties.arbiter[0] backend = config.backend work_mode = config.work_mode guest_train_data = { "name": "breast_hetero_guest", "namespace": f"experiment{namespace}" } host_train_data = { "name": "breast_hetero_host", "namespace": f"experiment{namespace}" } pipeline = PipeLine().set_initiator( role='guest', party_id=guest).set_roles(guest=guest, host=host, arbiter=arbiter) reader_0 = Reader(name="reader_0") reader_0.get_party_instance( role='guest', party_id=guest).component_param(table=guest_train_data) reader_0.get_party_instance( role='host', party_id=host).component_param(table=host_train_data) dataio_0 = DataIO(name="dataio_0") dataio_0.get_party_instance(role='guest', party_id=guest).component_param( with_label=True, missing_fill=True, outlier_replace=True) dataio_0.get_party_instance(role='host', party_id=host).component_param( with_label=False, missing_fill=True, outlier_replace=True) intersection_0 = Intersection(name="intersection_0") federated_sample_0 = FederatedSample(name="federated_sample_0", mode="stratified", method="upsample", fractions=[[0, 1.5], [1, 2.0]]) feature_scale_0 = FeatureScale(name="feature_scale_0") hetero_feature_binning_0 = HeteroFeatureBinning( name="hetero_feature_binning_0") hetero_feature_selection_0 = HeteroFeatureSelection( name="hetero_feature_selection_0") one_hot_0 = OneHotEncoder(name="one_hot_0") hetero_lr_0 = HeteroLR(name="hetero_lr_0", penalty="L2", optimizer="rmsprop", tol=1e-5, init_param={"init_method": "random_uniform"}, alpha=0.01, max_iter=10, early_stop="diff", batch_size=320, learning_rate=0.15) hetero_lr_1 = HeteroLR(name="hetero_lr_1", penalty="L2", optimizer="rmsprop", tol=1e-5, init_param={"init_method": "random_uniform"}, alpha=0.01, max_iter=10, early_stop="diff", batch_size=320, learning_rate=0.15, cv_param={ "n_splits": 5, "shuffle": True, "random_seed": 103, "need_cv": True }) hetero_secureboost_0 = HeteroSecureBoost(name="hetero_secureboost_0", num_trees=5, cv_param={ "shuffle": False, "need_cv": True }) hetero_secureboost_1 = HeteroSecureBoost(name="hetero_secureboost_1", num_trees=5) evaluation_0 = Evaluation(name="evaluation_0") evaluation_1 = Evaluation(name="evaluation_1") pipeline.add_component(reader_0) pipeline.add_component(dataio_0, data=Data(data=reader_0.output.data)) pipeline.add_component(intersection_0, data=Data(data=dataio_0.output.data)) pipeline.add_component(federated_sample_0, data=Data(data=intersection_0.output.data)) pipeline.add_component(feature_scale_0, data=Data(data=federated_sample_0.output.data)) pipeline.add_component(hetero_feature_binning_0, data=Data(data=feature_scale_0.output.data)) pipeline.add_component( hetero_feature_selection_0, data=Data(data=hetero_feature_binning_0.output.data)) pipeline.add_component( one_hot_0, data=Data(data=hetero_feature_selection_0.output.data)) pipeline.add_component(hetero_lr_0, data=Data(train_data=one_hot_0.output.data)) pipeline.add_component(hetero_lr_1, data=Data(train_data=one_hot_0.output.data)) pipeline.add_component(hetero_secureboost_0, data=Data(train_data=one_hot_0.output.data)) pipeline.add_component(hetero_secureboost_1, data=Data(train_data=one_hot_0.output.data)) pipeline.add_component(evaluation_0, data=Data(data=hetero_lr_0.output.data)) pipeline.add_component(evaluation_1, data=Data(data=hetero_lr_1.output.data)) pipeline.compile() job_parameters = JobParameters(backend=backend, work_mode=work_mode) pipeline.fit(job_parameters) print(pipeline.get_component("evaluation_0").get_summary())
def main(config="../../config.yaml", namespace=""): # obtain config if isinstance(config, str): config = load_job_config(config) parties = config.parties guest = parties.guest[0] host = parties.host[0] arbiter = parties.arbiter[0] guest_train_data = { "name": "breast_hetero_guest", "namespace": f"experiment{namespace}" } host_train_data = { "name": "breast_hetero_host", "namespace": f"experiment{namespace}" } pipeline = PipeLine().set_initiator( role='guest', party_id=guest).set_roles(guest=guest, host=host, arbiter=arbiter) reader_0 = Reader(name="reader_0") reader_0.get_party_instance( role='guest', party_id=guest).component_param(table=guest_train_data) reader_0.get_party_instance( role='host', party_id=host).component_param(table=host_train_data) reader_1 = Reader(name="reader_1") reader_1.get_party_instance( role='guest', party_id=guest).component_param(table=guest_train_data) reader_1.get_party_instance( role='host', party_id=host).component_param(table=host_train_data) reader_2 = Reader(name="reader_2") reader_2.get_party_instance( role='guest', party_id=guest).component_param(table=guest_train_data) reader_2.get_party_instance( role='host', party_id=host).component_param(table=host_train_data) data_transform_0 = DataTransform(name="data_transform_0") data_transform_0.get_party_instance( role='guest', party_id=guest).component_param(with_label=True, missing_fill=True, outlier_replace=True) data_transform_0.get_party_instance( role='host', party_id=host).component_param(with_label=False, missing_fill=True, outlier_replace=True) data_transform_1 = DataTransform(name="data_transform_1") data_transform_2 = DataTransform(name="data_transform_2") intersection_0 = Intersection(name="intersection_0") intersection_1 = Intersection(name="intersection_1") intersection_2 = Intersection(name="intersection_2") union_0 = Union(name="union_0") federated_sample_0 = FederatedSample(name="federated_sample_0", mode="stratified", method="downsample", fractions=[[0, 1.0], [1, 1.0]]) feature_scale_0 = FeatureScale(name="feature_scale_0") feature_scale_1 = FeatureScale(name="feature_scale_1") hetero_feature_binning_0 = HeteroFeatureBinning( name="hetero_feature_binning_0") hetero_feature_binning_1 = HeteroFeatureBinning( name="hetero_feature_binning_1") hetero_feature_selection_0 = HeteroFeatureSelection( name="hetero_feature_selection_0") hetero_feature_selection_1 = HeteroFeatureSelection( name="hetero_feature_selection_1") one_hot_0 = OneHotEncoder(name="one_hot_0") one_hot_1 = OneHotEncoder(name="one_hot_1") hetero_lr_0 = HeteroLR(name="hetero_lr_0", penalty="L2", optimizer="rmsprop", tol=1e-5, init_param={"init_method": "random_uniform"}, alpha=0.01, max_iter=3, early_stop="diff", batch_size=320, learning_rate=0.15) hetero_lr_1 = HeteroLR(name="hetero_lr_1") hetero_lr_2 = HeteroLR(name="hetero_lr_2", penalty="L2", optimizer="rmsprop", tol=1e-5, init_param={"init_method": "random_uniform"}, alpha=0.01, max_iter=3, early_stop="diff", batch_size=320, learning_rate=0.15, cv_param={ "n_splits": 5, "shuffle": True, "random_seed": 103, "need_cv": True }) hetero_sshe_lr_0 = HeteroSSHELR( name="hetero_sshe_lr_0", reveal_every_iter=True, reveal_strategy="respectively", penalty="L2", optimizer="rmsprop", tol=1e-5, batch_size=320, learning_rate=0.15, init_param={"init_method": "random_uniform"}, alpha=0.01, max_iter=3) hetero_sshe_lr_1 = HeteroSSHELR(name="hetero_sshe_lr_1") local_baseline_0 = LocalBaseline(name="local_baseline_0", model_name="LogisticRegression", model_opts={ "penalty": "l2", "tol": 0.0001, "C": 1.0, "fit_intercept": True, "solver": "lbfgs", "max_iter": 5, "multi_class": "ovr" }) local_baseline_0.get_party_instance( role='guest', party_id=guest).component_param(need_run=True) local_baseline_0.get_party_instance( role='host', party_id=host).component_param(need_run=False) local_baseline_1 = LocalBaseline(name="local_baseline_1") hetero_secureboost_0 = HeteroSecureBoost(name="hetero_secureboost_0", num_trees=3) hetero_secureboost_1 = HeteroSecureBoost(name="hetero_secureboost_1") hetero_secureboost_2 = HeteroSecureBoost(name="hetero_secureboost_2", num_trees=3, cv_param={ "shuffle": False, "need_cv": True }) hetero_linr_0 = HeteroLinR(name="hetero_linr_0", penalty="L2", optimizer="sgd", tol=0.001, alpha=0.01, max_iter=3, early_stop="weight_diff", batch_size=-1, learning_rate=0.15, decay=0.0, decay_sqrt=False, init_param={"init_method": "zeros"}, floating_point_precision=23) hetero_linr_1 = HeteroLinR(name="hetero_linr_1") hetero_sshe_linr_0 = HeteroSSHELinR(name="hetero_sshe_linr_0", max_iter=5, early_stop="weight_diff", batch_size=-1) hetero_sshe_linr_1 = HeteroSSHELinR(name="hetero_sshe_linr_1") hetero_poisson_0 = HeteroPoisson(name="hetero_poisson_0", early_stop="weight_diff", max_iter=10, alpha=100.0, batch_size=-1, learning_rate=0.01, optimizer="rmsprop", exposure_colname="exposure", decay_sqrt=False, tol=0.001, init_param={"init_method": "zeros"}, penalty="L2") hetero_poisson_1 = HeteroPoisson(name="hetero_poisson_1") hetero_sshe_poisson_0 = HeteroSSHEPoisson(name="hetero_sshe_poisson_0", max_iter=5) hetero_sshe_poisson_1 = HeteroSSHEPoisson(name="hetero_sshe_poisson_1") evaluation_0 = Evaluation(name="evaluation_0") evaluation_1 = Evaluation(name="evaluation_1") evaluation_2 = Evaluation(name="evaluation_2") pipeline.add_component(reader_0) pipeline.add_component(reader_1) pipeline.add_component(reader_2) pipeline.add_component(data_transform_0, data=Data(data=reader_0.output.data)) pipeline.add_component(data_transform_1, data=Data(data=reader_1.output.data), model=Model(model=data_transform_0.output.model)) pipeline.add_component(data_transform_2, data=Data(data=reader_2.output.data), model=Model(model=data_transform_0.output.model)) pipeline.add_component(intersection_0, data=Data(data=data_transform_0.output.data)) pipeline.add_component(intersection_1, data=Data(data=data_transform_1.output.data)) pipeline.add_component(intersection_2, data=Data(data=data_transform_2.output.data)) pipeline.add_component( union_0, data=Data( data=[intersection_0.output.data, intersection_2.output.data])) pipeline.add_component(federated_sample_0, data=Data(data=intersection_1.output.data)) pipeline.add_component(feature_scale_0, data=Data(data=union_0.output.data)) pipeline.add_component(feature_scale_1, data=Data(data=federated_sample_0.output.data), model=Model(model=feature_scale_0.output.model)) pipeline.add_component(hetero_feature_binning_0, data=Data(data=feature_scale_0.output.data)) pipeline.add_component( hetero_feature_binning_1, data=Data(data=feature_scale_1.output.data), model=Model(model=hetero_feature_binning_0.output.model)) pipeline.add_component( hetero_feature_selection_0, data=Data(data=hetero_feature_binning_0.output.data)) pipeline.add_component( hetero_feature_selection_1, data=Data(data=hetero_feature_binning_1.output.data), model=Model(model=hetero_feature_selection_0.output.model)) pipeline.add_component( one_hot_0, data=Data(data=hetero_feature_selection_0.output.data)) pipeline.add_component( one_hot_1, data=Data(data=hetero_feature_selection_1.output.data), model=Model(model=one_hot_0.output.model)) pipeline.add_component(hetero_lr_0, data=Data(train_data=one_hot_0.output.data)) pipeline.add_component(hetero_lr_1, data=Data(test_data=one_hot_1.output.data), model=Model(model=hetero_lr_0.output.model)) pipeline.add_component(hetero_lr_2, data=Data(train_data=one_hot_0.output.data)) pipeline.add_component(local_baseline_0, data=Data(train_data=one_hot_0.output.data)) pipeline.add_component(local_baseline_1, data=Data(test_data=one_hot_1.output.data), model=Model(model=local_baseline_0.output.model)) pipeline.add_component(hetero_sshe_lr_0, data=Data(train_data=one_hot_0.output.data)) pipeline.add_component(hetero_sshe_lr_1, data=Data(test_data=one_hot_1.output.data), model=Model(model=hetero_sshe_lr_0.output.model)) pipeline.add_component(hetero_secureboost_0, data=Data(train_data=one_hot_0.output.data)) pipeline.add_component( hetero_secureboost_1, data=Data(test_data=one_hot_1.output.data), model=Model(model=hetero_secureboost_0.output.model)) pipeline.add_component(hetero_secureboost_2, data=Data(train_data=one_hot_0.output.data)) pipeline.add_component(hetero_linr_0, data=Data(train_data=one_hot_0.output.data)) pipeline.add_component(hetero_linr_1, data=Data(test_data=one_hot_1.output.data), model=Model(model=hetero_linr_0.output.model)) pipeline.add_component(hetero_sshe_linr_0, data=Data(train_data=one_hot_0.output.data)) pipeline.add_component(hetero_sshe_linr_1, data=Data(test_data=one_hot_1.output.data), model=Model(model=hetero_sshe_linr_0.output.model)) pipeline.add_component(hetero_poisson_0, data=Data(train_data=one_hot_0.output.data)) pipeline.add_component(hetero_poisson_1, data=Data(test_data=one_hot_1.output.data), model=Model(model=hetero_poisson_0.output.model)) pipeline.add_component( evaluation_0, data=Data(data=[ hetero_lr_0.output.data, hetero_lr_1.output.data, hetero_sshe_lr_0.output.data, hetero_sshe_lr_1.output.data, local_baseline_0.output.data, local_baseline_1.output.data ])) pipeline.add_component(hetero_sshe_poisson_0, data=Data(train_data=one_hot_0.output.data)) pipeline.add_component( hetero_sshe_poisson_1, data=Data(test_data=one_hot_1.output.data), model=Model(model=hetero_sshe_poisson_0.output.model)) pipeline.add_component( evaluation_1, data=Data(data=[ hetero_linr_0.output.data, hetero_linr_1.output.data, hetero_sshe_linr_0.output.data, hetero_linr_1.output.data ])) pipeline.add_component( evaluation_2, data=Data(data=[ hetero_poisson_0.output.data, hetero_poisson_1.output.data, hetero_sshe_poisson_0.output.data, hetero_sshe_poisson_1.output.data ])) pipeline.compile() pipeline.fit() print(pipeline.get_component("evaluation_0").get_summary()) print(pipeline.get_component("evaluation_1").get_summary()) print(pipeline.get_component("evaluation_2").get_summary())
def main(config="../../config.yaml", namespace=""): if isinstance(config, str): config = load_job_config(config) parties = config.parties guest = parties.guest[0] hosts = parties.host[0] arbiter = parties.arbiter[0] guest_train_data = { "name": "breast_hetero_guest", "namespace": f"experiment{namespace}" } host_train_data = { "name": "breast_hetero_host", "namespace": f"experiment{namespace}" } # initialize pipeline pipeline = PipeLine() # set job initiator pipeline.set_initiator(role='guest', party_id=guest) # set participants information pipeline.set_roles(guest=guest, host=hosts, arbiter=arbiter) # define Reader components to read in data reader_0 = Reader(name="reader_0") # configure Reader for guest reader_0.get_party_instance( role='guest', party_id=guest).component_param(table=guest_train_data) # configure Reader for host reader_0.get_party_instance( role='host', party_id=hosts).component_param(table=host_train_data) data_transform_0 = DataTransform(name="data_transform_0", output_format='dense') # get DataTransform party instance of guest data_transform_0_guest_party_instance = data_transform_0.get_party_instance( role='guest', party_id=guest) # configure DataTransform for guest data_transform_0_guest_party_instance.component_param(with_label=True) # get and configure DataTransform party instance of host data_transform_0.get_party_instance( role='host', party_id=hosts).component_param(with_label=False) # define Intersection components intersection_0 = Intersection(name="intersection_0") pipeline.add_component(reader_0) pipeline.add_component(data_transform_0, data=Data(data=reader_0.output.data)) pipeline.add_component(intersection_0, data=Data(data=data_transform_0.output.data)) # secure boost component hetero_secure_boost_0 = HeteroSecureBoost( name="hetero_secure_boost_0", num_trees=3, task_type="classification", objective_param={"objective": "cross_entropy"}, encrypt_param={"method": "Paillier"}, tree_param={"max_depth": 3}, validation_freqs=1) hetero_secure_boost_1 = HeteroSecureBoost( name="hetero_secure_boost_1", num_trees=3, task_type="classification", objective_param={"objective": "cross_entropy"}, encrypt_param={"method": "Paillier"}, tree_param={"max_depth": 3}, validation_freqs=1) pipeline.add_component(hetero_secure_boost_0, data=Data(train_data=intersection_0.output.data)) pipeline.add_component( hetero_secure_boost_1, data=Data(train_data=intersection_0.output.data), model=Model(model=hetero_secure_boost_0.output.model)) evaluation_0 = Evaluation(name="evaluation_0", eval_type="binary") pipeline.add_component(evaluation_0, data=Data(data=hetero_secure_boost_1.output.data)) pipeline.compile() # fit model pipeline.fit() # query component summary prettify(pipeline.get_component("hetero_secure_boost_0").get_summary()) prettify(pipeline.get_component("hetero_secure_boost_1").get_summary()) prettify(pipeline.get_component("evaluation_0").get_summary()) return pipeline
def main(config="../../config.yaml", namespace=""): # obtain config if isinstance(config, str): config = load_job_config(config) parties = config.parties guest = parties.guest[0] host = parties.host[0] # data sets guest_train_data = { "name": "breast_hetero_guest", "namespace": f"experiment{namespace}" } host_train_data = { "name": "breast_hetero_host", "namespace": f"experiment{namespace}" } guest_validate_data = { "name": "breast_hetero_guest", "namespace": f"experiment{namespace}" } host_validate_data = { "name": "breast_hetero_host", "namespace": f"experiment{namespace}" } # init pipeline pipeline = PipeLine().set_initiator(role="guest", party_id=guest).set_roles( guest=guest, host=host, ) # set data reader and data-io reader_0, reader_1 = Reader(name="reader_0"), Reader(name="reader_1") reader_0.get_party_instance( role="guest", party_id=guest).component_param(table=guest_train_data) reader_0.get_party_instance( role="host", party_id=host).component_param(table=host_train_data) reader_1.get_party_instance( role="guest", party_id=guest).component_param(table=guest_validate_data) reader_1.get_party_instance( role="host", party_id=host).component_param(table=host_validate_data) data_transform_0, data_transform_1 = DataTransform( name="data_transform_0"), DataTransform(name="data_transform_1") data_transform_0.get_party_instance( role="guest", party_id=guest).component_param(with_label=True, output_format="dense") data_transform_0.get_party_instance( role="host", party_id=host).component_param(with_label=False) data_transform_1.get_party_instance( role="guest", party_id=guest).component_param(with_label=True, output_format="dense") data_transform_1.get_party_instance( role="host", party_id=host).component_param(with_label=False) # data intersect component intersect_0 = Intersection(name="intersection_0") intersect_1 = Intersection(name="intersection_1") # secure boost component hetero_secure_boost_0 = HeteroSecureBoost( name="hetero_secure_boost_0", num_trees=3, task_type="classification", objective_param={"objective": "cross_entropy"}, encrypt_param={"method": "Paillier"}, tree_param={"max_depth": 3}, validation_freqs=1) # evaluation component evaluation_0 = Evaluation(name="evaluation_0", eval_type="binary") pipeline.add_component(reader_0) pipeline.add_component(reader_1) pipeline.add_component(data_transform_0, data=Data(data=reader_0.output.data)) pipeline.add_component(data_transform_1, data=Data(data=reader_1.output.data), model=Model(data_transform_0.output.model)) pipeline.add_component(intersect_0, data=Data(data=data_transform_0.output.data)) pipeline.add_component(intersect_1, data=Data(data=data_transform_1.output.data)) pipeline.add_component(hetero_secure_boost_0, data=Data(train_data=intersect_0.output.data, validate_data=intersect_1.output.data)) pipeline.add_component(evaluation_0, data=Data(data=hetero_secure_boost_0.output.data)) pipeline.compile() pipeline.fit() print("fitting hetero secureboost done, result:") print(pipeline.get_component("hetero_secure_boost_0").get_summary()) print('start to predict') # predict # deploy required components pipeline.deploy_component( [data_transform_0, intersect_0, hetero_secure_boost_0, evaluation_0]) predict_pipeline = PipeLine() # add data reader onto predict pipeline predict_pipeline.add_component(reader_0) # add selected components from train pipeline onto predict pipeline # specify data source predict_pipeline.add_component( pipeline, data=Data(predict_input={ pipeline.data_transform_0.input.data: reader_0.output.data })) # run predict model predict_pipeline.predict() predict_result = predict_pipeline.get_component( "hetero_secure_boost_0").get_output_data() print("Showing 10 data of predict result") for ret in predict_result["data"][:10]: print(ret)