Example #1
0
def main():
    X_train = pd.read_csv("../Datos/Train_TP2_Datos_2020-2C.csv")
    X_test = pd.read_csv("../Datos/Test_TP2_Datos_2020-2C.csv")

    X_train = X_train.loc[(X_train["Stage"] == "Closed Won") |
                          (X_train["Stage"] == "Closed Lost"), :]
    X_train["Stage"] = X_train['Stage'].apply(lambda x: 1
                                              if x == 'Closed Won' else 0)

    pipe = MyPipeline(X_train, X_test)

    preprocess(pipe, X_train)
    pipe.set_model(
        RandomForestClassifier(max_depth=21,
                               max_features=13,
                               n_estimators=31,
                               random_state=123))
    pipe.set_folds(10)

    pipe.preprocess()
    pipe.train()
    pipe.predict()

    #pipe.score(verbose=True)
    #pipe.output()
    #pipe.submit()
    print("TODO OK")
Example #2
0
def main():
    X_train = pd.read_csv("../Datos/Train_TP2_Datos_2020-2C.csv")
    X_test = pd.read_csv("../Datos/Test_TP2_Datos_2020-2C.csv")

    X_train = X_train.loc[(X_train["Stage"] == "Closed Won") |
                          (X_train["Stage"] == "Closed Lost"), :]
    X_train["Stage"] = X_train['Stage'].apply(lambda x: 1
                                              if x == 'Closed Won' else 0)

    pipe = MyPipeline(X_train, X_test)

    preprocess(pipe, X_train)
    set_xgb_model(pipe, xgb_params)
    pipe.set_folds(20)

    pipe.preprocess()
    pipe.train()
    pipe.predict()

    pipe.score(verbose=True)
    #pipe.output()
    #pipe.submit()
    print("TODO OK")