def run_upsample(json_file_path, fmt_file_path):
    json_manager = JsonManager(json_file_path)

    if json_manager.get_upsample_status() == True:
        print(f"Upsampling started using {json_file_path} and {fmt_file_path}")
        upsampled_path = json_manager.get_upsampled_path()
        constants.remove_folder_if_exists(\
         constants.UPSAMPLED_CSV_FOLDER_NAME, upsampled_path)

        hot_encoded_folder = os.fsdecode(os.path.join(\
         json_manager.get_hot_encoded_path(), \
         constants.HOT_ENCODED_CSV_FOLDER_NAME))

        hot_encoded_file = os.fsdecode(os.path.join(\
         hot_encoded_folder, \
         constants.HOT_ENCODED_CSV_FILENAME))

        hotEncoded_data = pd.read_csv(hot_encoded_file)
        features_data = pd.read_csv(hot_encoded_file, \
        usecols = list(hotEncoded_data.columns)[:-1]) # everything except label
        labels_data = pd.read_csv(hot_encoded_file, \
        usecols = [list(hotEncoded_data.columns)[-1]]) # label

        sm = SVMSMOTE(random_state=json_manager.get_random_state())
        X_res, y_res = sm.fit_resample(features_data, labels_data)
        csv_ready = np.append(X_res, y_res, axis=constants.COLUMN_AXIS)

        upsampled_folder = constants.add_folder_to_directory(\
         constants.UPSAMPLED_CSV_FOLDER_NAME, upsampled_path)

        upsampled_file_path = os.fsdecode(os.path.join(\
         upsampled_folder, constants.UPSAMPLED_CSV_FILENAME))

        if os.path.exists(upsampled_file_path):
            os.remove(upsampled_file_path)

        f = open(fmt_file_path, "r")
        fmt = f.readline()
        f.close()

        header = ','.join(str(i) for i in hotEncoded_data.columns)
        np.savetxt(upsampled_file_path, csv_ready, \
         fmt = fmt, \
         delimiter = constants.CSV_DELIMITER, \
         header = header, \
         comments='')
        print(f"Upsampling finished, results in {upsampled_file_path}")
def main():
    json_file_path = process_command_line_args()
    json_manager = JsonManager(json_file_path)

    csv_folder = json_manager.get_csv_path()
    normalized_folder = json_manager.get_normalized_path()
    feature_columns = json_manager.get_feature_columns()
    label_columns = json_manager.get_label_columns()
    lag_features = json_manager.get_lag_features()
    lag_window_length = json_manager.get_sliding_window_length()

    destination_path = constants.add_folder_to_directory(\
     constants.NORMALIZED_CSV_FOLDER_NAME, normalized_folder)

    for file in os.listdir(csv_folder):
        complete_file_path = os.fsdecode(os.path.join(csv_folder, file))

        if is_file_CSV(file):
            normalized_filename = make_modified_filename(\
             file, CSV_NAME_EXTENSION)
            normalized_file_path = os.fsdecode(os.path.join(\
             destination_path, normalized_filename))

            current_csv_obj = open(complete_file_path)
            normalized_csv_obj = open(normalized_file_path, mode='w')

            csv_reader = csv.reader(current_csv_obj, \
             delimiter = constants.CSV_DELIMITER)
            csv_writer = csv.writer(normalized_csv_obj, \
             delimiter = constants.CSV_DELIMITER, \
             quotechar = constants.CSV_QUOTECHAR, \
             quoting=csv.QUOTE_MINIMAL)

            all_lag_queues = [[""] * lag_window_length
                              for lag_feature in lag_features]

            header_row = list(feature_columns)
            header_row.append(constants.LABEL_COLUMN_NAME)
            csv_writer.writerow(header_row)

            label_indices = list(label_columns.values())
            header_row_being_read = True
            for timeseries_row in csv_reader:
                if header_row_being_read:
                    header_row_being_read = False
                    continue
                label_values = [
                    timeseries_row[index] for index in label_indices
                ]
                label_value = next((label_value for label_value in label_values \
                 if label_value), None)

                if label_value:
                    new_normalize_row = []
                    for column_name, column_index in feature_columns.items():
                        if column_name in lag_features:
                            index = lag_features.index(column_name)
                            lagged_feature = update_lag_feature_queue(\
                             all_lag_queues[index], timeseries_row[column_index])
                            new_normalize_row.append(lagged_feature)
                        else:
                            new_normalize_row.append(\
                             timeseries_row[feature_columns[column_name]])
                    new_normalize_row.append(label_value)
                    csv_writer.writerow(new_normalize_row)
                else:
                    for column_index, column_name in enumerate(lag_features):
                        value = timeseries_row[feature_columns[column_name]]
                        update_lag_feature_queue(all_lag_queues[column_index],
                                                 value)

            current_csv_obj.close()
            normalized_csv_obj.close()

    combined_csv_file_path = os.path.join(destination_path,
                                          constants.COMBINED_CSV_FILENAME)

    if os.path.exists(combined_csv_file_path):
        os.remove(combined_csv_file_path)
    combined_csv = pd.concat([pd.read_csv(os.fsdecode(os.path.join(destination_path, f)))\
     for f in os.listdir(destination_path)])
    combined_csv.to_csv( os.fsdecode(combined_csv_file_path), \
     index = False, encoding = 'utf-8-sig')
Example #3
0
    def run(self):
        """Reads in data, trains, and reports results
		"""
        kFold = self.json_manager.get_kfold()
        max_depth = self.json_manager.get_decision_tree_depth()

        constants.remove_folder_if_exists(
            self.get_output_folder(kFold, max_depth))

        fmt, label_encoding = self.get_file_fmt_and_label_encoding()

        self.supervised_learning_dataframe = pd.read_csv(
            self.get_supervised_data_csv_filepath())
        self.features_data = self.supervised_learning_dataframe.loc[:, self.
                                                                    supervised_learning_dataframe
                                                                    .columns !=
                                                                    constants.
                                                                    LABEL_COLUMN_NAME]
        self.labels_data = self.supervised_learning_dataframe.loc[:, self.
                                                                  supervised_learning_dataframe
                                                                  .columns ==
                                                                  constants.
                                                                  LABEL_COLUMN_NAME]

        output_full_path = self.create_output_folder(kFold, max_depth)
        self.k_fold_train_decision_tree_w_max_depth(kFold, max_depth,
                                                    output_full_path)

        report_file = "{}_kFold_{}_maxDepth.txt".format(kFold, max_depth)
        dot_pdf_header = "{}_kFold_{}_maxDepth".format(kFold, max_depth)

        report_file_path = os.path.join(output_full_path, report_file)
        report_file_obj = open(report_file_path, "w")
        report_file_obj.write("Decision Tree with max_depth: {}, and kFold: {}\n".format(\
         max_depth, kFold))
        # report_file_obj.write("	Average train error with {} fold: {}\n".format(\
        # 	kFold, sum(self.train_scores)/len(self.train_accu)))
        # report_file_obj.write("	Average test error with {} fold: {}\n".format(\
        # 	kFold, sum(self.test_accu)/len(self.test_accu)))
        report_file_obj.write(
            "	Decision Tree (DOT format) saved to: {}\n".format(
                dot_pdf_header))
        report_file_obj.write(
            "	Decision Tree (PDF format) saved to: {}.pdf\n".format(
                dot_pdf_header))
        report_file_obj.write("Check {} for appropriate pruning.\n\n\n".format(
            PRUNING_GRAPH_FILENAME))

        clf = tree.DecisionTreeClassifier(random_state = self.json_manager.get_random_state(), \
         max_depth = max_depth)
        clf = clf.fit(self.features_data, self.labels_data)
        dot_pdf_full_path = os.fsdecode(
            os.path.join(output_full_path, dot_pdf_header))
        plot_decision_tree(clf, dot_pdf_full_path, self.features_data.columns)

        prune_path = clf.cost_complexity_pruning_path(self.features_data,
                                                      self.labels_data)
        ccp_alphas, impurities = prune_path.ccp_alphas, prune_path.impurities


        pruning_folder = constants.add_folder_to_directory(\
         constants.PRUNE_FOLDER_NAME, output_full_path)

        clfs = []
        train_scores = []
        for i, ccp_alpha in enumerate(ccp_alphas):
            clf = tree.DecisionTreeClassifier(random_state = self.json_manager.get_random_state(), \
             max_depth = max_depth, ccp_alpha=ccp_alpha)
            clf.fit(self.features_data, self.labels_data)
            score = clf.score(self.features_data, self.labels_data)

            clfs.append(clf)
            train_scores.append(score)

            newPrunePath = constants.add_folder_to_directory(
                "Pruning_{0}_{1:.6g}".format(i, ccp_alpha), pruning_folder)
            decision_tree_path = os.fsdecode(os.path.join(\
             newPrunePath, "{0}_kFold_{1}_maxDepth_{2}_{3:.6g}_prune".format(kFold, max_depth,i, ccp_alpha)))
            plot_decision_tree(clf, decision_tree_path,
                               self.features_data.columns)

            decision_tree_obj = clf.tree_

            # theoretical split to dump decision trees out to files
            # TODO: should we include categorical features as binary?
            full_binary_set = self.generate_full_binary_set()
            behavior_tree_obj = btBuilder.bt_espresso_mod(\
             decision_tree_obj,
             self.features_data.columns,
             label_encoding,
             self.json_manager.get_binary_features())

            behaviot_tree_full_path = os.fsdecode(os.path.join(\
             newPrunePath, constants.BEHAVIOR_TREE_XML_FILENAME))

            # btBuilder.save_tree(behavior_tree_obj, behaviot_tree_full_path)
            btBuilder.save_tree(behavior_tree_obj, newPrunePath)

            report_file_obj.write("prune: {} \n".format(i))
            report_file_obj.write("	ccp_alpha: {}, train score: {}\n".format(
                ccp_alpha, train_scores[i]))
            report_file_obj.write(
                "	Decision Tree saved to {}\n".format(decision_tree_path))
            report_file_obj.write("	Behavior Tree saved to {}\n\n".format(
                behaviot_tree_full_path))
            report_file_obj.write("")

        fig, ax = plt.subplots()
        ax.set_xlabel("alpha")
        ax.set_ylabel("accuracy")
        ax.set_title(
            "Accuracy vs alpha for Final Tree Prunes (note: uses all data for final training)"
        )
        ax.plot(ccp_alphas,
                self.train_scores,
                marker='o',
                label="train",
                drawstyle="steps-post")
        ax.plot(ccp_alphas,
                self.test_scores,
                marker='x',
                label="test",
                drawstyle="steps-post")
        ax.legend()
        graph_path = os.fsdecode(
            os.path.join(output_full_path, PRUNING_GRAPH_FILENAME))
        plt.savefig(graph_path)

        results_txt_file = open(
            os.fsdecode(os.path.join(output_full_path, RESULTS_TEXT_FILENAME)),
            "w")
        alist = ccp_alphas.flatten().tolist()
        acc_diffs = [
            a_i - b_i for a_i, b_i in zip(self.train_scores, self.test_scores)
        ]
        float_precision = 6
        results_txt_file.write(
            f"alphas:\t\t{self.format_float_list_to_precision(alist, float_precision)}\n"
        )
        results_txt_file.write(
            f"train acc:\t{self.format_float_list_to_precision(self.train_scores, float_precision)}\n"
        )
        results_txt_file.write(
            f"test acc:\t{self.format_float_list_to_precision(self.test_scores, float_precision)}\n"
        )
        results_txt_file.write(
            f"acc diff:\t{self.format_float_list_to_precision(acc_diffs, float_precision)}\n"
        )
        results_txt_file.close()

        report_file_obj.close()
        print(f"BehaviorTree buidling finished, results in {output_full_path}")
Example #4
0
 def create_output_folder(self, kFold, max_depth):
     output_folder = constants.add_folder_to_directory(\
      constants.PIPELINE_OUTPUT_FOLDER_NAME, self.json_manager.get_output_path())
     folder_name = "{}_kFold_{}_maxDepth".format(kFold, max_depth)
     return constants.add_folder_to_directory(folder_name, output_folder)
def main():
	json_file_path, log_file_path = process_command_line_args()
	json_manager = JsonManager(json_file_path)

	log_file = open(log_file_path, "r")
	fmt = log_file.readline()
	label_encoding = eval(log_file.readline())
	log_file.close()

	supervised_learning_data = None
	if json_manager.get_upsample_status() == True:
		upsampled_folder = os.fsdecode(os.path.join(\
			json_manager.get_upsampled_path(), constants.UPSAMPLED_CSV_FOLDER_NAME))

		supervised_learning_data = os.fsdecode(os.path.join(\
			upsampled_folder, constants.UPSAMPLED_CSV_FILENAME))
	else:
		hot_encoded_folder = os.fsdecode(os.path.join(\
			json_manager.get_hot_encoded_path(), constants.HOT_ENCODED_CSV_FOLDER_NAME))
		supervised_learning_data = os.fsdecode(os.path.join(\
			hot_encoded_folder, constants.HOT_ENCODED_CSV_FILENAME))

	supervised_learning_dataframe = pd.read_csv(supervised_learning_data)
	features_data = pd.read_csv(supervised_learning_data, \
		usecols = list(supervised_learning_dataframe.columns)[:-1])
	labels_data = pd.read_csv(supervised_learning_data, \
		usecols = [list(supervised_learning_dataframe.columns)[-1]])

	kFold = json_manager.get_kfold()
	max_depth = json_manager.get_decision_tree_depth()
	output_folder = constants.add_folder_to_directory(\
		constants.OUTPUT_FOLDER_NAME, json_manager.get_output_path())
	folder_name = "{}_kFold_{}_maxDepth".format(kFold, max_depth)
	output_full_path = constants.add_folder_to_directory(folder_name, output_folder)

	clfs = []
	trains_accu = []
	test_accu = []
	# for j in range(4):
	kf = KFold(shuffle = True, n_splits = kFold)
	for train_index, test_index in kf.split(features_data):
		X_train, X_test = features_data.iloc[train_index], features_data.iloc[test_index]
		y_train, y_test = labels_data.iloc[train_index], labels_data.iloc[test_index]

		clf = tree.DecisionTreeClassifier(random_state = json_manager.get_random_state(), \
			max_depth = max_depth)
		clf = clf.fit(X_train, y_train)

		trains_accu.append(clf.score(X_train, y_train))
		test_accu.append(clf.score(X_test, y_test))
		clfs.append(clf)

	report_file = "{}_kFold_{}_maxDepth.txt".format(kFold, max_depth)
	dot_pdf_header = "{}_kFold_{}_maxDepth".format(kFold, max_depth)

	report_file_path = os.path.join(output_full_path, report_file)
	# if os.path.exists(decisionTreeFile_path): 
	# 	os.remove(decisionTreeFile_path)

	report_file_obj = open(report_file_path, "w")
	report_file_obj.write("Decision Tree with max_depth: {}, and kFold: {}\n".format(\
		max_depth, kFold))
	report_file_obj.write("	Average train error with {} fold: {}\n".format(\
		kFold, sum(trains_accu)/len(trains_accu)))
	report_file_obj.write("	Average test error with {} fold: {}\n".format(\
		kFold, sum(test_accu)/len(test_accu)))
	report_file_obj.write("	Decision Tree (DOT format) saved to: {}\n".format(dot_pdf_header))
	report_file_obj.write("	Decision Tree (PDF format) saved to: {}.pdf\n".format(dot_pdf_header))
	report_file_obj.write("Check {} for appropriate pruning.\n\n\n".format(PRUNING_GRAPH_FILENAME))

	clf = tree.DecisionTreeClassifier(random_state = json_manager.get_random_state(), \
		max_depth = max_depth)
	clf = clf.fit(features_data, labels_data)
	dot_pdf_full_path = os.fsdecode(os.path.join(output_full_path, dot_pdf_header))
	plot_decision_tree(clf, dot_pdf_full_path, features_data.columns)

	prune_path = clf.cost_complexity_pruning_path(features_data, labels_data)
	ccp_alphas, impurities = prune_path.ccp_alphas, prune_path.impurities


	pruning_folder = constants.add_folder_to_directory(\
		constants.PRUNE_FOLDER_NAME, output_full_path)

	clfs = []
	train_scores = []
	for i, ccp_alpha in enumerate(ccp_alphas):
		clf = tree.DecisionTreeClassifier(random_state = json_manager.get_random_state(), \
			max_depth = max_depth, ccp_alpha=ccp_alpha)
		clf.fit(features_data, labels_data)
		score = clf.score(features_data, labels_data)

		clfs.append(clf)
		train_scores.append(score)

		newPrunePath = constants.add_folder_to_directory("Pruning_{}".format(i), pruning_folder)
		decision_tree_path = os.fsdecode(os.path.join(\
			newPrunePath, "{}_kFold_{}_maxDepth_{}_prune".format(kFold, max_depth, i)))
		plot_decision_tree(clf, decision_tree_path, features_data.columns)

		decision_tree_obj = clf.tree_
		behavior_tree_obj = btBuilder.bt_espresso_mod(\
			decision_tree_obj, features_data.columns, label_encoding)

		behaviot_tree_full_path = os.fsdecode(os.path.join(\
			newPrunePath, constants.BEHAVIOR_TREE_XML_FILENAME))

		# btBuilder.save_tree(behavior_tree_obj, behaviot_tree_full_path)
		btBuilder.save_tree(behavior_tree_obj, newPrunePath)

		report_file_obj.write("prune: {} \n".format(i))
		report_file_obj.write("	ccp_alpha: {}, train score: {}\n".format(ccp_alpha, train_scores[i]))
		report_file_obj.write("	Decision Tree saved to {}\n".format(decision_tree_path))
		report_file_obj.write("	Behavior Tree saved to {}\n\n".format(behaviot_tree_full_path))
		report_file_obj.write("")

	fig, ax = plt.subplots()
	ax.set_xlabel("alpha")
	ax.set_ylabel("accuracy")
	ax.set_title("Accuracy vs alpha for training sets")
	ax.plot(ccp_alphas, train_scores, marker='o', label="train", drawstyle="steps-post")
	ax.legend()
	graph_path = os.fsdecode(os.path.join(output_full_path, PRUNING_GRAPH_FILENAME))
	plt.savefig(graph_path)

	report_file_obj.close()
Example #6
0
def main():
    json_file_path = process_command_line_args()
    json_manager = JsonManager(json_file_path)
    feature_columns = json_manager.get_feature_columns()
    categorical_features = json_manager.get_categorical_features()
    binary_features = json_manager.get_binary_features()
    hot_encoded_path = json_manager.get_hot_encoded_path()

    normalized_folder = os.fsdecode(os.path.join(\
     json_manager.get_normalized_path(), \
     constants.NORMALIZED_CSV_FOLDER_NAME))
    combined_csv_file = os.fsdecode(os.path.join(\
     normalized_folder, \
     constants.COMBINED_CSV_FILENAME))

    features_data = pd.read_csv(combined_csv_file, usecols=feature_columns)

    for binary_variable in binary_features:
        features_data[binary_variable] = features_data[binary_variable].fillna(
            value=-1)
        features_data[binary_variable] = features_data[binary_variable] * 1
    true_false_columns = features_data[binary_features]
    true_false_columns_array = true_false_columns.to_numpy()

    # true_false_features(features_data, true_false_features)

    # hot encoded features
    hot_encoded_array, hot_encoded_header = hot_encode_features(\
     features_data, categorical_features)

    # remove hot encoded features from features_data dataframe
    features_data = features_data.drop(columns=categorical_features +
                                       binary_features)
    features_data_array = features_data.to_numpy()

    # encode labels
    labels_data = pd.read_csv(combined_csv_file, \
     usecols = [constants.LABEL_COLUMN_NAME])
    label_encoder, labels_column_array = encode_label_column(labels_data)

    # add hot_encoded columns, than numerical columns, then encoded labels to one array
    final_csv = np.concatenate(\
     (hot_encoded_array, binary_columns_array, \
      features_data_array, labels_column_array), \
     axis = constants.COLUMN_AXIS)

    hot_encoded_folder = constants.add_folder_to_directory(\
     constants.HOT_ENCODED_CSV_FOLDER_NAME, hot_encoded_path)
    hot_encoded_file_path = os.fsdecode(os.path.join(\
     hot_encoded_folder, constants.HOT_ENCODED_CSV_FILENAME))

    if os.path.exists(hot_encoded_file_path):
        os.remove(hot_encoded_file_path)

    # make_formatter_string(hot_encoded_header, numerical_columns, label_column)
    hot_encode_fmt = "%i," * len(
        hot_encoded_header +
        binary_features)  # format hot encoded columns to ints
    feature_data_fmt = "%1.3f," * len(
        features_data.columns)  # format numerical columns to doubles
    total_fmt = hot_encode_fmt + feature_data_fmt + "%i"  # for label

    final_header = ','.join(
        str(i) for i in (hot_encoded_header + binary_features +
                         list(features_data.columns)))
    final_header += "," + constants.LABEL_COLUMN_NAME  # for label


    np.savetxt(hot_encoded_file_path, final_csv, \
     fmt = total_fmt, \
     header = final_header, \
     delimiter = constants.CSV_DELIMITER, \
     comments='')

    f = open(OUTPUT_LOG_FILE, "w")
    f.write("{}\n".format(total_fmt))
    f.write(str((label_encoder.classes_).tolist()))
    f.close()
Example #7
0
def run_normalize(json_file_path):
    global add_last_action_taken
    print(f"Normalizing started using {json_file_path}")

    json_manager = JsonManager(json_file_path)
    csv_folder = json_manager.get_csv_path()
    normalized_folder = json_manager.get_normalized_path()
    feature_list = json_manager.get_feature_columns()
    label_columns = json_manager.get_label_columns()
    lag_features = json_manager.get_lag_features()
    lag_window_length = json_manager.get_sliding_window_length()
    add_last_action_taken = json_manager.get_add_last_action_taken()

    constants.remove_folder_if_exists(\
     constants.NORMALIZED_CSV_FOLDER_NAME, normalized_folder)

    destination_path = constants.add_folder_to_directory(\
     constants.NORMALIZED_CSV_FOLDER_NAME, normalized_folder)

    for file in os.listdir(csv_folder):
        complete_file_path = os.fsdecode(os.path.join(csv_folder, file))
        last_action_taken = None

        if is_file_CSV(file):
            print(f"Reading in csv: {complete_file_path}")
            normalized_filename = make_modified_filename(\
             file, CSV_NAME_EXTENSION)
            normalized_file_path = os.fsdecode(os.path.join(\
             destination_path, normalized_filename))

            current_csv_obj = open(complete_file_path)
            normalized_csv_obj = open(normalized_file_path, mode='w')

            csv_reader = csv.reader(current_csv_obj, \
             delimiter = constants.CSV_DELIMITER)
            csv_writer = csv.writer(normalized_csv_obj, \
             delimiter = constants.CSV_DELIMITER, \
             quotechar = constants.CSV_QUOTECHAR, \
             quoting=csv.QUOTE_MINIMAL)

            all_lag_queues = [[""] * lag_window_length
                              for lag_feature in lag_features]

            header_row = list(feature_list)
            if (add_last_action_taken):
                header_row.append(constants.LAST_ACTION_TAKEN_COLUMN_NAME)
            header_row.append(constants.LABEL_COLUMN_NAME)
            csv_writer.writerow(header_row)

            header_row_being_read = True
            for timeseries_row in csv_reader:
                if header_row_being_read:
                    feature_columns = generate_feature_col_dictionary(
                        timeseries_row, feature_list, False)
                    label_indices = list(
                        generate_feature_col_dictionary(
                            timeseries_row, label_columns, True).values())
                    header_row_being_read = False
                    continue

                label_values = [
                    timeseries_row[index] for index in label_indices
                ]
                label_value = next((label_value for label_value in label_values \
                 if label_value), None)

                if label_value:
                    new_normalize_row = []
                    for column_name, column_index in feature_columns.items():
                        if column_name in lag_features:
                            index = lag_features.index(column_name)
                            lagged_feature = update_lag_feature_queue(\
                             all_lag_queues[index], timeseries_row[column_index])
                            new_normalize_row.append(lagged_feature)
                        elif column_name == constants.LAST_ACTION_TAKEN_COLUMN_NAME:
                            new_normalize_row.append(last_action_taken)
                        else:
                            new_normalize_row.append(\
                             timeseries_row[feature_columns[column_name]])
                    new_normalize_row.append(label_value)
                    last_action_taken = label_value
                    csv_writer.writerow(new_normalize_row)
                else:
                    for column_index, column_name in enumerate(lag_features):
                        value = timeseries_row[feature_columns[column_name]]
                        update_lag_feature_queue(all_lag_queues[column_index],
                                                 value)

            current_csv_obj.close()
            normalized_csv_obj.close()

    combined_csv_file_path = os.path.join(destination_path,
                                          constants.COMBINED_CSV_FILENAME)

    if os.path.exists(combined_csv_file_path):
        os.remove(combined_csv_file_path)
    combined_csv = pd.concat([pd.read_csv(os.fsdecode(os.path.join(destination_path, f)))\
     for f in os.listdir(destination_path)])
    combined_csv.to_csv( os.fsdecode(combined_csv_file_path), \
     index = False, encoding = 'utf-8-sig')
    print(f"Normalizing finished, results in {normalized_file_path}")
def run_hotencode(json_file_path):
    global add_last_action_taken
    print(f"Hot encoding started using {json_file_path}")

    json_manager = JsonManager(json_file_path)
    feature_list = json_manager.get_feature_columns()
    categorical_features = json_manager.get_categorical_features()
    add_last_action_taken = json_manager.get_add_last_action_taken()

    if add_last_action_taken:
        categorical_features.append(constants.LAST_ACTION_TAKEN_COLUMN_NAME)
    binary_features = json_manager.get_binary_features()
    hot_encoded_path = json_manager.get_hot_encoded_path()

    constants.remove_folder_if_exists(\
     constants.HOT_ENCODED_CSV_FOLDER_NAME, hot_encoded_path)

    hot_encoded_folder = constants.add_folder_to_directory(\
     constants.HOT_ENCODED_CSV_FOLDER_NAME, hot_encoded_path)
    hot_encoded_file_path = os.fsdecode(os.path.join(\
     hot_encoded_folder, constants.HOT_ENCODED_CSV_FILENAME))

    normalized_folder = os.fsdecode(os.path.join(\
     json_manager.get_normalized_path(), \
     constants.NORMALIZED_CSV_FOLDER_NAME))

    combined_csv_file = os.fsdecode(os.path.join(\
     normalized_folder, \
     constants.COMBINED_CSV_FILENAME))

    feature_columns = generate_feature_col_dictionary(
        get_header_row(combined_csv_file), feature_list, False)

    features_data = pd.read_csv(combined_csv_file, usecols=feature_columns)

    features_data[binary_features] = features_data[binary_features].fillna(0)
    features_data[binary_features] = features_data[binary_features].astype(
        bool)
    binary_columns_array = features_data[binary_features].to_numpy()

    # hot encoded features
    hot_encoded_array, hot_encoded_header = hot_encode_features(\
     features_data, categorical_features)

    # remove hot encoded features from features_data dataframe
    features_data = features_data.drop(columns=categorical_features +
                                       binary_features)
    features_data_array = features_data.to_numpy()

    # encode labels
    labels_data = pd.read_csv(combined_csv_file, \
     usecols = [constants.LABEL_COLUMN_NAME])
    label_encoder, labels_column_array = encode_label_column(labels_data)

    # add hot_encoded columns, than numerical columns, then encoded labels to one array
    final_csv = np.concatenate(\
     (hot_encoded_array, binary_columns_array, \
      features_data_array, labels_column_array), \
     axis = constants.COLUMN_AXIS)

    # make_formatter_string(hot_encoded_header, numerical_columns, label_column)
    hot_encode_fmt = "%s," * len(
        hot_encoded_header +
        binary_features)  # format hot encoded columns to binary features
    feature_data_fmt = "%1.3f," * len(
        features_data.columns)  # format numerical columns to doubles
    total_fmt = hot_encode_fmt + feature_data_fmt + "%i"  # for label

    final_header = ','.join(
        str(i) for i in (hot_encoded_header + binary_features +
                         list(features_data.columns)))
    final_header += "," + constants.LABEL_COLUMN_NAME  # for label


    np.savetxt(hot_encoded_file_path, final_csv, \
     fmt = total_fmt, \
     header = final_header, \
     delimiter = constants.CSV_DELIMITER, \
     comments='')

    f = open(OUTPUT_LOG_FILE, "w")
    f.write("{}\n".format(total_fmt))
    f.write(str((label_encoder.classes_).tolist()))
    f.close()
    print(f"Hot Encoding finished, results in {hot_encoded_file_path}")