def _process_wine_quality_prediction(args): params = parse_wine_quality_params(args) preparer = WhiteWinesPreparer() features = preparer.prepare(params) predictions = RegressionPredictor(wine_cls).predict(features) return str(predictions[0])
def _process_forest_fire_prediction(args): params = parse_forest_fire_params(args) preparer = ForestFiresPreparer() arry = preparer.prepare(params) predictions = RegressionPredictor(fires_reg).predict(arry) return str(predictions[0])
def _process_abalone_prediction(args): params = parse_abalone_params(args) preparer = AbalonePreparer() features = preparer.prepare(params) predictions = RegressionPredictor(abalone_reg).predict(features) return str(predictions[0])
def test_returns_zero_as_lower_bound(self): model.predict.return_value = [-23.4324] engine = RegressionPredictor(model) inference = engine.predict([vals])[0] assert inference == 0, 'Inference lower bound should be zero'
def test_return_specified_decimal_points(self): engine = RegressionPredictor(model) inference = engine.predict([vals], decimals=4)[0] assert number_of_decimals(inference) == 4, 'number of decimal points \
def test_return_two_decimal_points(self): engine = RegressionPredictor(model) inference = engine.predict([vals])[0] assert number_of_decimals(inference) == 2, 'default number of decimal \
def test_returns_prediction(self): engine = RegressionPredictor(model) inference = engine.predict([vals])[0] assert inference == 23.43, 'Prediction value is incorrect'
def test_return_float(self): engine = RegressionPredictor(model) inference = engine.predict([vals])[0] assert type(inference) == float, 'Inferences should be real numbers'