def solve_opf(self): if self.node_type == 1: gen = False else: gen = True f_fcn = lambda x, return_hessian=False: self.f(x, return_hessian) gh_fcn = lambda x: self.gh(x, gen) hess_fcn = lambda x, lmbda, cost_mult=1: self.hess( x, lmbda, cost_mult, gen) solution = pips(f_fcn, self.x0, xmin=self.lb, xmax=self.ub, gh_fcn=gh_fcn, hess_fcn=hess_fcn) x, f, s, lam, _ = solution["x"], solution["f"], solution["eflag"], \ solution["lmbda"], solution["output"] return [x, f, s]
from scipy.sparse import csr_matrix from pips import pips def f2(x): f = -x[0] * x[1] - x[1] * x[2] df = -r_[x[1], x[0] + x[2], x[1]] # actually not used since 'hess_fcn' is provided d2f = -array([[0, 1, 0], [1, 0, 1], [0, 1, 0]], float64) return f, df, d2f def gh2(x): h = dot(array([ [1, -1, 1], [1, 1, 1] ]), x**2) + array([-2.0, -10.0]) dh = 2 * csr_matrix( array([ [x[0], x[0]], [-x[1], x[1]], [x[2], x[2]] ]) ) g = array([]) dg = None return h, g, dh, dg def hess2(x, lam): mu = lam["ineqnonlin"] Lxx = csr_matrix( array([ r_[dot(2 * array([1, 1]), mu), -1, 0], r_[-1, dot(2 * array([-1, 1]), mu), -1], r_[0, -1, dot(2 * array([1, 1]), mu)] ]) ) return Lxx x0 = array([1, 1, 0], float64) opt = {"verbose": True} solution = pips(f2, x0, gh_fcn=gh2, hess_fcn=hess2, opt=opt) print solution["output"]["iterations"], "F:", solution["x"], solution["f"]
def _solve(self, x0, A, l, u, xmin, xmax): """ Solves using Python Interior Point Solver (PIPS). """ s = pips(self._costfcn, x0, A, l, u, xmin, xmax, self._consfcn, self._hessfcn, self.opt) return s
def qps_pips(H, c, A, l, u, xmin=None, xmax=None, x0=None, opt=None): """Uses the Python Interior Point Solver (PIPS) to solve the following QP (quadratic programming) problem:: min 1/2 x'*H*x + C'*x x subject to:: l <= A*x <= u (linear constraints) xmin <= x <= xmax (variable bounds) Note the calling syntax is almost identical to that of QUADPROG from MathWorks' Optimization Toolbox. The main difference is that the linear constraints are specified with C{A}, C{L}, C{U} instead of C{A}, C{B}, C{Aeq}, C{Beq}. Example from U{http://www.uc.edu/sashtml/iml/chap8/sect12.htm}: >>> from numpy import array, zeros, Inf >>> from scipy.sparse import csr_matrix >>> H = csr_matrix(array([[1003.1, 4.3, 6.3, 5.9], ... [4.3, 2.2, 2.1, 3.9], ... [6.3, 2.1, 3.5, 4.8], ... [5.9, 3.9, 4.8, 10 ]])) >>> c = zeros(4) >>> A = csr_matrix(array([[1, 1, 1, 1 ], ... [0.17, 0.11, 0.10, 0.18]])) >>> l = array([1, 0.10]) >>> u = array([1, Inf]) >>> xmin = zeros(4) >>> xmax = None >>> x0 = array([1, 0, 0, 1]) >>> solution = qps_pips(H, c, A, l, u, xmin, xmax, x0) >>> round(solution["f"], 11) == 1.09666678128 True >>> solution["converged"] True >>> solution["output"]["iterations"] 10 All parameters are optional except C{H}, C{c}, C{A} and C{l} or C{u}. @param H: Quadratic cost coefficients. @type H: csr_matrix @param c: vector of linear cost coefficients @type c: array @param A: Optional linear constraints. @type A: csr_matrix @param l: Optional linear constraints. Default values are M{-Inf}. @type l: array @param u: Optional linear constraints. Default values are M{Inf}. @type u: array @param xmin: Optional lower bounds on the M{x} variables, defaults are M{-Inf}. @type xmin: array @param xmax: Optional upper bounds on the M{x} variables, defaults are M{Inf}. @type xmax: array @param x0: Starting value of optimization vector M{x}. @type x0: array @param opt: optional options dictionary with the following keys, all of which are also optional (default values shown in parentheses) - C{verbose} (False) - Controls level of progress output displayed - C{feastol} (1e-6) - termination tolerance for feasibility condition - C{gradtol} (1e-6) - termination tolerance for gradient condition - C{comptol} (1e-6) - termination tolerance for complementarity condition - C{costtol} (1e-6) - termination tolerance for cost condition - C{max_it} (150) - maximum number of iterations - C{step_control} (False) - set to True to enable step-size control - C{max_red} (20) - maximum number of step-size reductions if step-control is on - C{cost_mult} (1.0) - cost multiplier used to scale the objective function for improved conditioning. Note: The same value must also be passed to the Hessian evaluation function so that it can appropriately scale the objective function term in the Hessian of the Lagrangian. @type opt: dict @rtype: dict @return: The solution dictionary has the following keys: - C{x} - solution vector - C{f} - final objective function value - C{converged} - exit status - True = first order optimality conditions satisfied - False = maximum number of iterations reached - None = numerically failed - C{output} - output dictionary with keys: - C{iterations} - number of iterations performed - C{hist} - dictionary of arrays with trajectories of the following: feascond, gradcond, coppcond, costcond, gamma, stepsize, obj, alphap, alphad - C{message} - exit message - C{lmbda} - dictionary containing the Langrange and Kuhn-Tucker multipliers on the constraints, with keys: - C{eqnonlin} - nonlinear equality constraints - C{ineqnonlin} - nonlinear inequality constraints - C{mu_l} - lower (left-hand) limit on linear constraints - C{mu_u} - upper (right-hand) limit on linear constraints - C{lower} - lower bound on optimization variables - C{upper} - upper bound on optimization variables @see: L{pips} @author: Ray Zimmerman (PSERC Cornell) @author: Richard Lincoln """ if isinstance(H, dict): p = H else: p = {'H': H, 'c': c, 'A': A, 'l': l, 'u': u} if xmin is not None: p['xmin'] = xmin if xmax is not None: p['xmax'] = xmax if x0 is not None: p['x0'] = x0 if opt is not None: p['opt'] = opt if 'H' not in p or p['H'] == None:#p['H'].nnz == 0: if p['A'] is None or p['A'].nnz == 0 and \ 'xmin' not in p and \ 'xmax' not in p: # 'xmin' not in p or len(p['xmin']) == 0 and \ # 'xmax' not in p or len(p['xmax']) == 0: print 'qps_pips: LP problem must include constraints or variable bounds' return else: if p['A'] is not None and p['A'].nnz >= 0: nx = p['A'].shape[1] elif 'xmin' in p and len(p['xmin']) > 0: nx = p['xmin'].shape[0] elif 'xmax' in p and len(p['xmax']) > 0: nx = p['xmax'].shape[0] p['H'] = sparse((nx, nx)) else: nx = p['H'].shape[0] p['xmin'] = -Inf * ones(nx) if 'xmin' not in p else p['xmin'] p['xmax'] = Inf * ones(nx) if 'xmax' not in p else p['xmax'] p['c'] = zeros(nx) if p['c'] is None else p['c'] p['x0'] = zeros(nx) if 'x0' not in p else p['x0'] def qp_f(x, return_hessian=False): f = 0.5 * dot(x * p['H'], x) + dot(p['c'], x) df = p['H'] * x + p['c'] if not return_hessian: return f, df d2f = p['H'] return f, df, d2f p['f_fcn'] = qp_f sol = pips(p) return sol["x"], sol["f"], sol["eflag"], sol["output"], sol["lmbda"]
def pipsopf_solver(om, ppopt, out_opt=None): """Solves AC optimal power flow using PIPS. Inputs are an OPF model object, a PYPOWER options vector and a dict containing keys (can be empty) for each of the desired optional output fields. outputs are a C{results} dict, C{success} flag and C{raw} output dict. C{results} is a PYPOWER case dict (ppc) with the usual baseMVA, bus branch, gen, gencost fields, along with the following additional fields: - C{order} see 'help ext2int' for details of this field - C{x} final value of optimization variables (internal order) - C{f} final objective function value - C{mu} shadow prices on ... - C{var} - C{l} lower bounds on variables - C{u} upper bounds on variables - C{nln} - C{l} lower bounds on nonlinear constraints - C{u} upper bounds on nonlinear constraints - C{lin} - C{l} lower bounds on linear constraints - C{u} upper bounds on linear constraints C{success} is C{True} if solver converged successfully, C{False} otherwise C{raw} is a raw output dict in form returned by MINOS - xr final value of optimization variables - pimul constraint multipliers - info solver specific termination code - output solver specific output information @see: L{opf}, L{pips} @author: Ray Zimmerman (PSERC Cornell) @author: Carlos E. Murillo-Sanchez (PSERC Cornell & Universidad Autonoma de Manizales) @author: Richard Lincoln """ ##----- initialization ----- ## optional output if out_opt is None: out_opt = {} ## options verbose = ppopt['VERBOSE'] feastol = ppopt['PDIPM_FEASTOL'] gradtol = ppopt['PDIPM_GRADTOL'] comptol = ppopt['PDIPM_COMPTOL'] costtol = ppopt['PDIPM_COSTTOL'] max_it = ppopt['PDIPM_MAX_IT'] max_red = ppopt['SCPDIPM_RED_IT'] step_control = (ppopt['OPF_ALG'] == 565) ## OPF_ALG == 565, PIPS-sc if feastol == 0: feastol = ppopt['OPF_VIOLATION'] opt = { 'feastol': feastol, 'gradtol': gradtol, 'comptol': comptol, 'costtol': costtol, 'max_it': max_it, 'max_red': max_red, 'step_control': step_control, 'cost_mult': 1e-4, 'verbose': verbose } ## unpack data ppc = om.get_ppc() baseMVA, bus, gen, branch, gencost = \ ppc["baseMVA"], ppc["bus"], ppc["gen"], ppc["branch"], ppc["gencost"] vv, _, nn, _ = om.get_idx() ## problem dimensions nb = bus.shape[0] ## number of buses nl = branch.shape[0] ## number of branches ny = om.getN('var', 'y') ## number of piece-wise linear costs ## linear constraints A, l, u = om.linear_constraints() ## bounds on optimization vars _, xmin, xmax = om.getv() ## build admittance matrices Ybus, Yf, Yt = makeYbus(baseMVA, bus, branch) ## try to select an interior initial point ll, uu = xmin.copy(), xmax.copy() ll[xmin == -Inf] = -1e10 ## replace Inf with numerical proxies uu[xmax == Inf] = 1e10 x0 = (ll + uu) / 2 Varefs = bus[bus[:, BUS_TYPE] == REF, VA] * (pi / 180) ## angles set to first reference angle x0[vv["i1"]["Va"]:vv["iN"]["Va"]] = Varefs[0] if ny > 0: ipwl = find(gencost[:, MODEL] == PW_LINEAR) # PQ = r_[gen[:, PMAX], gen[:, QMAX]] # c = totcost(gencost[ipwl, :], PQ[ipwl]) c = gencost.flatten('F')[sub2ind(gencost.shape, ipwl, NCOST+2*gencost[ipwl, NCOST])] ## largest y-value in CCV data x0[vv["i1"]["y"]:vv["iN"]["y"]] = max(c) + 0.1 * abs(max(c)) # x0[vv["i1"]["y"]:vv["iN"]["y"]] = c + 0.1 * abs(c) ## find branches with flow limits il = find((branch[:, RATE_A] != 0) & (branch[:, RATE_A] < 1e10)) nl2 = len(il) ## number of constrained lines ##----- run opf ----- f_fcn = lambda x, return_hessian=False: opf_costfcn(x, om, return_hessian) gh_fcn = lambda x: opf_consfcn(x, om, Ybus, Yf[il, :], Yt[il,:], ppopt, il) hess_fcn = lambda x, lmbda, cost_mult: opf_hessfcn(x, lmbda, om, Ybus, Yf[il, :], Yt[il, :], ppopt, il, cost_mult) solution = pips(f_fcn, x0, A, l, u, xmin, xmax, gh_fcn, hess_fcn, opt) x, f, info, lmbda, output = solution["x"], solution["f"], \ solution["eflag"], solution["lmbda"], solution["output"] success = (info > 0) ## update solution data Va = x[vv["i1"]["Va"]:vv["iN"]["Va"]] Vm = x[vv["i1"]["Vm"]:vv["iN"]["Vm"]] Pg = x[vv["i1"]["Pg"]:vv["iN"]["Pg"]] Qg = x[vv["i1"]["Qg"]:vv["iN"]["Qg"]] V = Vm * exp(1j * Va) ##----- calculate return values ----- ## update voltages & generator outputs bus[:, VA] = Va * 180 / pi bus[:, VM] = Vm gen[:, PG] = Pg * baseMVA gen[:, QG] = Qg * baseMVA gen[:, VG] = Vm[ gen[:, GEN_BUS].astype(int) ] ## compute branch flows Sf = V[ branch[:, F_BUS].astype(int) ] * conj(Yf * V) ## cplx pwr at "from" bus, p["u"]. St = V[ branch[:, T_BUS].astype(int) ] * conj(Yt * V) ## cplx pwr at "to" bus, p["u"]. branch[:, PF] = Sf.real * baseMVA branch[:, QF] = Sf.imag * baseMVA branch[:, PT] = St.real * baseMVA branch[:, QT] = St.imag * baseMVA ## line constraint is actually on square of limit ## so we must fix multipliers muSf = zeros(nl) muSt = zeros(nl) if len(il) > 0: muSf[il] = \ 2 * lmbda["ineqnonlin"][:nl2] * branch[il, RATE_A] / baseMVA muSt[il] = \ 2 * lmbda["ineqnonlin"][nl2:nl2+nl2] * branch[il, RATE_A] / baseMVA ## update Lagrange multipliers bus[:, MU_VMAX] = lmbda["upper"][vv["i1"]["Vm"]:vv["iN"]["Vm"]] bus[:, MU_VMIN] = lmbda["lower"][vv["i1"]["Vm"]:vv["iN"]["Vm"]] gen[:, MU_PMAX] = lmbda["upper"][vv["i1"]["Pg"]:vv["iN"]["Pg"]] / baseMVA gen[:, MU_PMIN] = lmbda["lower"][vv["i1"]["Pg"]:vv["iN"]["Pg"]] / baseMVA gen[:, MU_QMAX] = lmbda["upper"][vv["i1"]["Qg"]:vv["iN"]["Qg"]] / baseMVA gen[:, MU_QMIN] = lmbda["lower"][vv["i1"]["Qg"]:vv["iN"]["Qg"]] / baseMVA bus[:, LAM_P] = \ lmbda["eqnonlin"][nn["i1"]["Pmis"]:nn["iN"]["Pmis"]] / baseMVA bus[:, LAM_Q] = \ lmbda["eqnonlin"][nn["i1"]["Qmis"]:nn["iN"]["Qmis"]] / baseMVA branch[:, MU_SF] = muSf / baseMVA branch[:, MU_ST] = muSt / baseMVA ## package up results nlnN = om.getN('nln') ## extract multipliers for nonlinear constraints kl = find(lmbda["eqnonlin"] < 0) ku = find(lmbda["eqnonlin"] > 0) nl_mu_l = zeros(nlnN) nl_mu_u = r_[zeros(2*nb), muSf, muSt] nl_mu_l[kl] = -lmbda["eqnonlin"][kl] nl_mu_u[ku] = lmbda["eqnonlin"][ku] mu = { 'var': {'l': lmbda["lower"], 'u': lmbda["upper"]}, 'nln': {'l': nl_mu_l, 'u': nl_mu_u}, 'lin': {'l': lmbda["mu_l"], 'u': lmbda["mu_u"]} } results = ppc results["bus"], results["branch"], results["gen"], \ results["om"], results["x"], results["mu"], results["f"] = \ bus, branch, gen, om, x, mu, f pimul = r_[ results["mu"]["nln"]["l"] - results["mu"]["nln"]["u"], results["mu"]["lin"]["l"] - results["mu"]["lin"]["u"], -ones(ny > 0), results["mu"]["var"]["l"] - results["mu"]["var"]["u"], ] raw = {'xr': x, 'pimul': pimul, 'info': info, 'output': output} return results, success, raw
def pipsopf_solver(om, ppopt, z, nu, rho): """Solves AC optimal power flow using PIPS. Inputs are an OPF model object, a PYPOWER options vector and a dict containing keys (can be empty) for each of the desired optional output fields. outputs are a C{results} dict, C{success} flag and C{raw} output dict. C{results} is a PYPOWER case dict (ppc) with the usual baseMVA, bus branch, gen, gencost fields, along with the following additional fields: - C{order} see 'help ext2int' for details of this field - C{x} final value of optimization variables (internal order) - C{f} final objective function value - C{mu} shadow prices on ... - C{var} - C{l} lower bounds on variables - C{u} upper bounds on variables - C{nln} - C{l} lower bounds on nonlinear constraints - C{u} upper bounds on nonlinear constraints - C{lin} - C{l} lower bounds on linear constraints - C{u} upper bounds on linear constraints C{success} is C{True} if solver converged successfully, C{False} otherwise C{raw} is a raw output dict in form returned by MINOS - xr final value of optimization variables - pimul constraint multipliers - info solver specific termination code - output solver specific output information @see: L{opf}, L{pips} """ ##----- initialization ----- ## options verbose = ppopt['VERBOSE'] feastol = ppopt['PDIPM_FEASTOL'] gradtol = ppopt['PDIPM_GRADTOL'] comptol = ppopt['PDIPM_COMPTOL'] costtol = ppopt['PDIPM_COSTTOL'] max_it = ppopt['PDIPM_MAX_IT'] max_red = ppopt['SCPDIPM_RED_IT'] step_control = (ppopt['OPF_ALG'] == 565) ## OPF_ALG == 565, PIPS-sc if feastol == 0: feastol = ppopt['OPF_VIOLATION'] opt = { 'feastol': feastol, 'gradtol': gradtol, 'comptol': comptol, 'costtol': costtol, 'max_it': max_it, 'max_red': max_red, 'step_control': step_control, 'cost_mult': 1e-4, 'verbose': verbose } ## unpack data ppc = om.get_ppc() baseMVA, bus, gen, branch = \ ppc["baseMVA"], ppc["bus"], ppc["gen"], ppc["branch"] vv, _, nn, _ = om.get_idx() ## problem dimensions nb = bus.shape[0] ## number of buses nl = branch.shape[0] ## number of branches ## linear constraints A, l, u = om.linear_constraints() ## bounds on optimization vars _, xmin, xmax = om.getv() ## build admittance matrices Ybus, Yf, Yt = makeYbus(baseMVA, bus, branch) ## try to select an interior initial point ll, uu = xmin.copy(), xmax.copy() ll[xmin == -Inf] = -1e10 ## replace Inf with numerical proxies uu[xmax == Inf] = 1e10 x0 = (ll + uu) / 2 Varefs = bus[bus[:, BUS_TYPE] == REF, VA] * (pi / 180) ## angles set to first reference angle # x0[vv["i1"]["Va"]:vv["iN"]["Va"]] = Varefs[0] ## find branches with flow limits il = find((branch[:, RATE_A] != 0) & (branch[:, RATE_A] < 1e10)) nl2 = len(il) ## number of constrained lines ##----- run opf ----- f_fcn = lambda x, return_hessian=False: opf_costfcn(x, om, rho, nu, z, return_hessian) gh_fcn = lambda x: opf_consfcn(x, om, Ybus, Yf[il, :], Yt[il,:], ppopt, il) hess_fcn = lambda x, lmbda, cost_mult: opf_hessfcn(x, lmbda, om, Ybus, Yf[il, :], Yt[il, :], ppopt, rho, il) solution = pips(f_fcn, x0, A, l, u, xmin, xmax, gh_fcn, hess_fcn, opt) x, f, info, lmbda, output = solution["x"], solution["f"], \ solution["eflag"], solution["lmbda"], solution["output"] success = (info > 0) ## update solution data Va = x[vv["i1"]["Va"]:vv["iN"]["Va"]] Vm = x[vv["i1"]["Vm"]:vv["iN"]["Vm"]] Pg = x[vv["i1"]["Pg"]:vv["iN"]["Pg"]] Qg = x[vv["i1"]["Qg"]:vv["iN"]["Qg"]] V = Vm * exp(1j * Va) ##----- calculate return values ----- ## update voltages & generator outputs bus[:, VA] = Va * 180 / pi bus[:, VM] = Vm gen[:, PG] = Pg * baseMVA gen[:, QG] = Qg * baseMVA gen[:, VG] = Vm[ gen[:, GEN_BUS].astype(int) ] ## compute branch flows Sf = V[ branch[:, F_BUS].astype(int) ] * conj(Yf * V) ## cplx pwr at "from" bus, p["u"]. St = V[ branch[:, T_BUS].astype(int) ] * conj(Yt * V) ## cplx pwr at "to" bus, p["u"]. branch[:, PF] = Sf.real * baseMVA branch[:, QF] = Sf.imag * baseMVA branch[:, PT] = St.real * baseMVA branch[:, QT] = St.imag * baseMVA ## line constraint is actually on square of limit ## so we must fix multipliers muSf = zeros(nl) muSt = zeros(nl) if len(il) > 0: muSf[il] = \ 2 * lmbda["ineqnonlin"][:nl2] * branch[il, RATE_A] / baseMVA muSt[il] = \ 2 * lmbda["ineqnonlin"][nl2:nl2+nl2] * branch[il, RATE_A] / baseMVA ## update Lagrange multipliers bus[:, MU_VMAX] = lmbda["upper"][vv["i1"]["Vm"]:vv["iN"]["Vm"]] bus[:, MU_VMIN] = lmbda["lower"][vv["i1"]["Vm"]:vv["iN"]["Vm"]] gen[:, MU_PMAX] = lmbda["upper"][vv["i1"]["Pg"]:vv["iN"]["Pg"]] / baseMVA gen[:, MU_PMIN] = lmbda["lower"][vv["i1"]["Pg"]:vv["iN"]["Pg"]] / baseMVA gen[:, MU_QMAX] = lmbda["upper"][vv["i1"]["Qg"]:vv["iN"]["Qg"]] / baseMVA gen[:, MU_QMIN] = lmbda["lower"][vv["i1"]["Qg"]:vv["iN"]["Qg"]] / baseMVA bus[:, LAM_P] = \ lmbda["eqnonlin"][nn["i1"]["Pmis"]:nn["iN"]["Pmis"]] / baseMVA bus[:, LAM_Q] = \ lmbda["eqnonlin"][nn["i1"]["Qmis"]:nn["iN"]["Qmis"]] / baseMVA branch[:, MU_SF] = muSf / baseMVA branch[:, MU_ST] = muSt / baseMVA ## package up results nlnN = om.getN('nln') results = ppc results["bus"], results["branch"], results["gen"], \ results["om"], results["x"], results["f"] = \ bus, branch, gen, om, x, f return results, success
def gh6(x): h = dot([[1.0, -1.0, 1.0], [1.0, 1.0, 1.0]], x**2) + [-2.0, -10.0] dh = 2 * csr_matrix([[x[0], x[0]], [-x[1], x[1]], [x[2], x[2]]], dtype=float) g = array([]) dg = None return h, g, dh, dg def hess6(x, lam, cost_mult=1): mu = lam['ineqnonlin'] Lxx = cost_mult * \ csr_matrix([[ 0, -1, 0], [-1, 0, -1], [ 0, -1, 0]], dtype=float) + \ csr_matrix([[2 * dot([1, 1], mu), 0, 0], [0, 2 * dot([-1, 1], mu), 0], [0, 0, 2 * dot([1, 1], mu)]], dtype=float) return Lxx f_fcn = f6 gh_fcn = gh6 hess_fcn = hess6 x0 = array([1.0, 1.0, 0.0]) # solution = pips(f_fcn, x0, gh_fcn=gh_fcn, hess_fcn=hess_fcn, opt={'verbose': 2, 'comptol': 1e-9}) solution = pips(f_fcn, x0, gh_fcn=gh_fcn, hess_fcn=hess_fcn) x, f, s, lam, out = solution["x"], solution["f"], solution["eflag"], \ solution["lmbda"], solution["output"] print(x, s)