Example #1
0
    def solve_opf(self):
        if self.node_type == 1:
            gen = False
        else:
            gen = True

        f_fcn = lambda x, return_hessian=False: self.f(x, return_hessian)
        gh_fcn = lambda x: self.gh(x, gen)
        hess_fcn = lambda x, lmbda, cost_mult=1: self.hess(
            x, lmbda, cost_mult, gen)

        solution = pips(f_fcn,
                        self.x0,
                        xmin=self.lb,
                        xmax=self.ub,
                        gh_fcn=gh_fcn,
                        hess_fcn=hess_fcn)
        x, f, s, lam, _ = solution["x"], solution["f"], solution["eflag"], \
                          solution["lmbda"], solution["output"]

        return [x, f, s]
Example #2
0
from scipy.sparse import csr_matrix
from pips import pips

def f2(x):
    f = -x[0] * x[1] - x[1] * x[2]
    df = -r_[x[1], x[0] + x[2], x[1]]
    # actually not used since 'hess_fcn' is provided
    d2f = -array([[0, 1, 0], [1, 0, 1], [0, 1, 0]], float64)
    return f, df, d2f

def gh2(x):
    h = dot(array([ [1, -1, 1], [1, 1, 1] ]), x**2) + array([-2.0, -10.0])
    dh = 2 * csr_matrix( array([ [x[0], x[0]], [-x[1], x[1]], [x[2], x[2]] ]) )
    g = array([])
    dg = None
    return h, g, dh, dg

def hess2(x, lam):
    mu = lam["ineqnonlin"]
    Lxx = csr_matrix( array([ r_[dot(2 * array([1, 1]), mu), -1, 0],
                              r_[-1, dot(2 * array([-1, 1]), mu), -1],
                              r_[0, -1, dot(2 * array([1, 1]), mu)] ]) )
    return Lxx

x0 = array([1, 1, 0], float64)
opt = {"verbose": True}

solution = pips(f2, x0, gh_fcn=gh2, hess_fcn=hess2, opt=opt)

print solution["output"]["iterations"], "F:", solution["x"], solution["f"]
Example #3
0
 def _solve(self, x0, A, l, u, xmin, xmax):
     """ Solves using Python Interior Point Solver (PIPS).
     """
     s = pips(self._costfcn, x0, A, l, u, xmin, xmax,
              self._consfcn, self._hessfcn, self.opt)
     return s
Example #4
0
def qps_pips(H, c, A, l, u, xmin=None, xmax=None, x0=None, opt=None):
    """Uses the Python Interior Point Solver (PIPS) to solve the following
    QP (quadratic programming) problem::

            min 1/2 x'*H*x + C'*x
             x

    subject to::

            l <= A*x <= u       (linear constraints)
            xmin <= x <= xmax   (variable bounds)

    Note the calling syntax is almost identical to that of QUADPROG from
    MathWorks' Optimization Toolbox. The main difference is that the linear
    constraints are specified with C{A}, C{L}, C{U} instead of C{A}, C{B},
    C{Aeq}, C{Beq}.

    Example from U{http://www.uc.edu/sashtml/iml/chap8/sect12.htm}:

        >>> from numpy import array, zeros, Inf
        >>> from scipy.sparse import csr_matrix
        >>> H = csr_matrix(array([[1003.1,  4.3,     6.3,     5.9],
        ...                       [4.3,     2.2,     2.1,     3.9],
        ...                       [6.3,     2.1,     3.5,     4.8],
        ...                       [5.9,     3.9,     4.8,     10 ]]))
        >>> c = zeros(4)
        >>> A = csr_matrix(array([[1,       1,       1,       1   ],
        ...                       [0.17,    0.11,    0.10,    0.18]]))
        >>> l = array([1, 0.10])
        >>> u = array([1, Inf])
        >>> xmin = zeros(4)
        >>> xmax = None
        >>> x0 = array([1, 0, 0, 1])
        >>> solution = qps_pips(H, c, A, l, u, xmin, xmax, x0)
        >>> round(solution["f"], 11) == 1.09666678128
        True
        >>> solution["converged"]
        True
        >>> solution["output"]["iterations"]
        10

    All parameters are optional except C{H}, C{c}, C{A} and C{l} or C{u}.
    @param H: Quadratic cost coefficients.
    @type H: csr_matrix
    @param c: vector of linear cost coefficients
    @type c: array
    @param A: Optional linear constraints.
    @type A: csr_matrix
    @param l: Optional linear constraints. Default values are M{-Inf}.
    @type l: array
    @param u: Optional linear constraints. Default values are M{Inf}.
    @type u: array
    @param xmin: Optional lower bounds on the M{x} variables, defaults are
                 M{-Inf}.
    @type xmin: array
    @param xmax: Optional upper bounds on the M{x} variables, defaults are
                 M{Inf}.
    @type xmax: array
    @param x0: Starting value of optimization vector M{x}.
    @type x0: array
    @param opt: optional options dictionary with the following keys, all of
                which are also optional (default values shown in parentheses)
                  - C{verbose} (False) - Controls level of progress output
                    displayed
                  - C{feastol} (1e-6) - termination tolerance for feasibility
                    condition
                  - C{gradtol} (1e-6) - termination tolerance for gradient
                    condition
                  - C{comptol} (1e-6) - termination tolerance for
                    complementarity condition
                  - C{costtol} (1e-6) - termination tolerance for cost
                    condition
                  - C{max_it} (150) - maximum number of iterations
                  - C{step_control} (False) - set to True to enable step-size
                    control
                  - C{max_red} (20) - maximum number of step-size reductions if
                    step-control is on
                  - C{cost_mult} (1.0) - cost multiplier used to scale the
                    objective function for improved conditioning. Note: The
                    same value must also be passed to the Hessian evaluation
                    function so that it can appropriately scale the objective
                    function term in the Hessian of the Lagrangian.
    @type opt: dict

    @rtype: dict
    @return: The solution dictionary has the following keys:
               - C{x} - solution vector
               - C{f} - final objective function value
               - C{converged} - exit status
                   - True = first order optimality conditions satisfied
                   - False = maximum number of iterations reached
                   - None = numerically failed
               - C{output} - output dictionary with keys:
                   - C{iterations} - number of iterations performed
                   - C{hist} - dictionary of arrays with trajectories of the
                     following: feascond, gradcond, coppcond, costcond, gamma,
                     stepsize, obj, alphap, alphad
                   - C{message} - exit message
               - C{lmbda} - dictionary containing the Langrange and Kuhn-Tucker
                 multipliers on the constraints, with keys:
                   - C{eqnonlin} - nonlinear equality constraints
                   - C{ineqnonlin} - nonlinear inequality constraints
                   - C{mu_l} - lower (left-hand) limit on linear constraints
                   - C{mu_u} - upper (right-hand) limit on linear constraints
                   - C{lower} - lower bound on optimization variables
                   - C{upper} - upper bound on optimization variables

    @see: L{pips}

    @author: Ray Zimmerman (PSERC Cornell)
    @author: Richard Lincoln
    """
    if isinstance(H, dict):
        p = H
    else:
        p = {'H': H, 'c': c, 'A': A, 'l': l, 'u': u}
        if xmin is not None: p['xmin'] = xmin
        if xmax is not None: p['xmax'] = xmax
        if x0 is not None: p['x0'] = x0
        if opt is not None: p['opt'] = opt

    if 'H' not in p or p['H'] == None:#p['H'].nnz == 0:
        if p['A'] is None or p['A'].nnz == 0 and \
           'xmin' not in p and \
           'xmax' not in p:
#           'xmin' not in p or len(p['xmin']) == 0 and \
#           'xmax' not in p or len(p['xmax']) == 0:
            print 'qps_pips: LP problem must include constraints or variable bounds'
            return
        else:
            if p['A'] is not None and p['A'].nnz >= 0:
                nx = p['A'].shape[1]
            elif 'xmin' in p and len(p['xmin']) > 0:
                nx = p['xmin'].shape[0]
            elif 'xmax' in p and len(p['xmax']) > 0:
                nx = p['xmax'].shape[0]
        p['H'] = sparse((nx, nx))
    else:
        nx = p['H'].shape[0]

    p['xmin'] = -Inf * ones(nx) if 'xmin' not in p else p['xmin']
    p['xmax'] =  Inf * ones(nx) if 'xmax' not in p else p['xmax']

    p['c'] = zeros(nx) if p['c'] is None else p['c']

    p['x0'] = zeros(nx) if 'x0' not in p else p['x0']

    def qp_f(x, return_hessian=False):
        f = 0.5 * dot(x * p['H'], x) + dot(p['c'], x)
        df = p['H'] * x + p['c']
        if not return_hessian:
            return f, df
        d2f = p['H']
        return f, df, d2f

    p['f_fcn'] = qp_f

    sol = pips(p)

    return sol["x"], sol["f"], sol["eflag"], sol["output"], sol["lmbda"]
Example #5
0
def pipsopf_solver(om, ppopt, out_opt=None):
    """Solves AC optimal power flow using PIPS.

    Inputs are an OPF model object, a PYPOWER options vector and
    a dict containing keys (can be empty) for each of the desired
    optional output fields.

    outputs are a C{results} dict, C{success} flag and C{raw} output dict.

    C{results} is a PYPOWER case dict (ppc) with the usual baseMVA, bus
    branch, gen, gencost fields, along with the following additional
    fields:
        - C{order}      see 'help ext2int' for details of this field
        - C{x}          final value of optimization variables (internal order)
        - C{f}          final objective function value
        - C{mu}         shadow prices on ...
            - C{var}
                - C{l}  lower bounds on variables
                - C{u}  upper bounds on variables
            - C{nln}
                - C{l}  lower bounds on nonlinear constraints
                - C{u}  upper bounds on nonlinear constraints
            - C{lin}
                - C{l}  lower bounds on linear constraints
                - C{u}  upper bounds on linear constraints

    C{success} is C{True} if solver converged successfully, C{False} otherwise

    C{raw} is a raw output dict in form returned by MINOS
        - xr     final value of optimization variables
        - pimul  constraint multipliers
        - info   solver specific termination code
        - output solver specific output information

    @see: L{opf}, L{pips}

    @author: Ray Zimmerman (PSERC Cornell)
    @author: Carlos E. Murillo-Sanchez (PSERC Cornell & Universidad
    Autonoma de Manizales)
    @author: Richard Lincoln
    """
    ##----- initialization -----
    ## optional output
    if out_opt is None:
        out_opt = {}

    ## options
    verbose = ppopt['VERBOSE']
    feastol = ppopt['PDIPM_FEASTOL']
    gradtol = ppopt['PDIPM_GRADTOL']
    comptol = ppopt['PDIPM_COMPTOL']
    costtol = ppopt['PDIPM_COSTTOL']
    max_it  = ppopt['PDIPM_MAX_IT']
    max_red = ppopt['SCPDIPM_RED_IT']
    step_control = (ppopt['OPF_ALG'] == 565)  ## OPF_ALG == 565, PIPS-sc
    if feastol == 0:
        feastol = ppopt['OPF_VIOLATION']
    opt = {  'feastol': feastol,
             'gradtol': gradtol,
             'comptol': comptol,
             'costtol': costtol,
             'max_it': max_it,
             'max_red': max_red,
             'step_control': step_control,
             'cost_mult': 1e-4,
             'verbose': verbose  }

    ## unpack data
    ppc = om.get_ppc()
    baseMVA, bus, gen, branch, gencost = \
        ppc["baseMVA"], ppc["bus"], ppc["gen"], ppc["branch"], ppc["gencost"]
    vv, _, nn, _ = om.get_idx()

    ## problem dimensions
    nb = bus.shape[0]          ## number of buses
    nl = branch.shape[0]       ## number of branches
    ny = om.getN('var', 'y')   ## number of piece-wise linear costs

    ## linear constraints
    A, l, u = om.linear_constraints()

    ## bounds on optimization vars
    _, xmin, xmax = om.getv()

    ## build admittance matrices
    Ybus, Yf, Yt = makeYbus(baseMVA, bus, branch)

    ## try to select an interior initial point
    ll, uu = xmin.copy(), xmax.copy()
    ll[xmin == -Inf] = -1e10   ## replace Inf with numerical proxies
    uu[xmax ==  Inf] =  1e10
    x0 = (ll + uu) / 2
    Varefs = bus[bus[:, BUS_TYPE] == REF, VA] * (pi / 180)
    ## angles set to first reference angle
    x0[vv["i1"]["Va"]:vv["iN"]["Va"]] = Varefs[0]
    if ny > 0:
        ipwl = find(gencost[:, MODEL] == PW_LINEAR)
#         PQ = r_[gen[:, PMAX], gen[:, QMAX]]
#         c = totcost(gencost[ipwl, :], PQ[ipwl])
        c = gencost.flatten('F')[sub2ind(gencost.shape, ipwl, NCOST+2*gencost[ipwl, NCOST])]    ## largest y-value in CCV data
        x0[vv["i1"]["y"]:vv["iN"]["y"]] = max(c) + 0.1 * abs(max(c))
#        x0[vv["i1"]["y"]:vv["iN"]["y"]] = c + 0.1 * abs(c)

    ## find branches with flow limits
    il = find((branch[:, RATE_A] != 0) & (branch[:, RATE_A] < 1e10))
    nl2 = len(il)           ## number of constrained lines

    ##-----  run opf  -----
    f_fcn = lambda x, return_hessian=False: opf_costfcn(x, om, return_hessian)
    gh_fcn = lambda x: opf_consfcn(x, om, Ybus, Yf[il, :], Yt[il,:], ppopt, il)
    hess_fcn = lambda x, lmbda, cost_mult: opf_hessfcn(x, lmbda, om, Ybus, Yf[il, :], Yt[il, :], ppopt, il, cost_mult)

    solution = pips(f_fcn, x0, A, l, u, xmin, xmax, gh_fcn, hess_fcn, opt)
    x, f, info, lmbda, output = solution["x"], solution["f"], \
            solution["eflag"], solution["lmbda"], solution["output"]

    success = (info > 0)

    ## update solution data
    Va = x[vv["i1"]["Va"]:vv["iN"]["Va"]]
    Vm = x[vv["i1"]["Vm"]:vv["iN"]["Vm"]]
    Pg = x[vv["i1"]["Pg"]:vv["iN"]["Pg"]]
    Qg = x[vv["i1"]["Qg"]:vv["iN"]["Qg"]]

    V = Vm * exp(1j * Va)

    ##-----  calculate return values  -----
    ## update voltages & generator outputs
    bus[:, VA] = Va * 180 / pi
    bus[:, VM] = Vm
    gen[:, PG] = Pg * baseMVA
    gen[:, QG] = Qg * baseMVA
    gen[:, VG] = Vm[ gen[:, GEN_BUS].astype(int) ]

    ## compute branch flows
    Sf = V[ branch[:, F_BUS].astype(int) ] * conj(Yf * V)  ## cplx pwr at "from" bus, p["u"].
    St = V[ branch[:, T_BUS].astype(int) ] * conj(Yt * V)  ## cplx pwr at "to" bus, p["u"].
    branch[:, PF] = Sf.real * baseMVA
    branch[:, QF] = Sf.imag * baseMVA
    branch[:, PT] = St.real * baseMVA
    branch[:, QT] = St.imag * baseMVA

    ## line constraint is actually on square of limit
    ## so we must fix multipliers
    muSf = zeros(nl)
    muSt = zeros(nl)
    if len(il) > 0:
        muSf[il] = \
            2 * lmbda["ineqnonlin"][:nl2] * branch[il, RATE_A] / baseMVA
        muSt[il] = \
            2 * lmbda["ineqnonlin"][nl2:nl2+nl2] * branch[il, RATE_A] / baseMVA

    ## update Lagrange multipliers
    bus[:, MU_VMAX]  = lmbda["upper"][vv["i1"]["Vm"]:vv["iN"]["Vm"]]
    bus[:, MU_VMIN]  = lmbda["lower"][vv["i1"]["Vm"]:vv["iN"]["Vm"]]
    gen[:, MU_PMAX]  = lmbda["upper"][vv["i1"]["Pg"]:vv["iN"]["Pg"]] / baseMVA
    gen[:, MU_PMIN]  = lmbda["lower"][vv["i1"]["Pg"]:vv["iN"]["Pg"]] / baseMVA
    gen[:, MU_QMAX]  = lmbda["upper"][vv["i1"]["Qg"]:vv["iN"]["Qg"]] / baseMVA
    gen[:, MU_QMIN]  = lmbda["lower"][vv["i1"]["Qg"]:vv["iN"]["Qg"]] / baseMVA

    bus[:, LAM_P] = \
        lmbda["eqnonlin"][nn["i1"]["Pmis"]:nn["iN"]["Pmis"]] / baseMVA
    bus[:, LAM_Q] = \
        lmbda["eqnonlin"][nn["i1"]["Qmis"]:nn["iN"]["Qmis"]] / baseMVA
    branch[:, MU_SF] = muSf / baseMVA
    branch[:, MU_ST] = muSt / baseMVA

    ## package up results
    nlnN = om.getN('nln')

    ## extract multipliers for nonlinear constraints
    kl = find(lmbda["eqnonlin"] < 0)
    ku = find(lmbda["eqnonlin"] > 0)
    nl_mu_l = zeros(nlnN)
    nl_mu_u = r_[zeros(2*nb), muSf, muSt]
    nl_mu_l[kl] = -lmbda["eqnonlin"][kl]
    nl_mu_u[ku] =  lmbda["eqnonlin"][ku]

    mu = {
      'var': {'l': lmbda["lower"], 'u': lmbda["upper"]},
      'nln': {'l': nl_mu_l, 'u': nl_mu_u},
      'lin': {'l': lmbda["mu_l"], 'u': lmbda["mu_u"]} }

    results = ppc
    results["bus"], results["branch"], results["gen"], \
        results["om"], results["x"], results["mu"], results["f"] = \
            bus, branch, gen, om, x, mu, f

    pimul = r_[
        results["mu"]["nln"]["l"] - results["mu"]["nln"]["u"],
        results["mu"]["lin"]["l"] - results["mu"]["lin"]["u"],
        -ones(ny > 0),
        results["mu"]["var"]["l"] - results["mu"]["var"]["u"],
    ]
    raw = {'xr': x, 'pimul': pimul, 'info': info, 'output': output}

    return results, success, raw
Example #6
0
def pipsopf_solver(om, ppopt, z, nu, rho):
    """Solves AC optimal power flow using PIPS.

    Inputs are an OPF model object, a PYPOWER options vector and
    a dict containing keys (can be empty) for each of the desired
    optional output fields.

    outputs are a C{results} dict, C{success} flag and C{raw} output dict.

    C{results} is a PYPOWER case dict (ppc) with the usual baseMVA, bus
    branch, gen, gencost fields, along with the following additional
    fields:
        - C{order}      see 'help ext2int' for details of this field
        - C{x}          final value of optimization variables (internal order)
        - C{f}          final objective function value
        - C{mu}         shadow prices on ...
            - C{var}
                - C{l}  lower bounds on variables
                - C{u}  upper bounds on variables
            - C{nln}
                - C{l}  lower bounds on nonlinear constraints
                - C{u}  upper bounds on nonlinear constraints
            - C{lin}
                - C{l}  lower bounds on linear constraints
                - C{u}  upper bounds on linear constraints

    C{success} is C{True} if solver converged successfully, C{False} otherwise

    C{raw} is a raw output dict in form returned by MINOS
        - xr     final value of optimization variables
        - pimul  constraint multipliers
        - info   solver specific termination code
        - output solver specific output information

    @see: L{opf}, L{pips}
    """

    ##----- initialization -----

    ## options
    verbose = ppopt['VERBOSE']
    feastol = ppopt['PDIPM_FEASTOL']
    gradtol = ppopt['PDIPM_GRADTOL']
    comptol = ppopt['PDIPM_COMPTOL']
    costtol = ppopt['PDIPM_COSTTOL']
    max_it  = ppopt['PDIPM_MAX_IT']
    max_red = ppopt['SCPDIPM_RED_IT']
    step_control = (ppopt['OPF_ALG'] == 565)  ## OPF_ALG == 565, PIPS-sc
    if feastol == 0:
        feastol = ppopt['OPF_VIOLATION']
    opt = {  'feastol': feastol,
             'gradtol': gradtol,
             'comptol': comptol,
             'costtol': costtol,
             'max_it': max_it,
             'max_red': max_red,
             'step_control': step_control,
             'cost_mult': 1e-4,
             'verbose': verbose  }

    ## unpack data
    ppc = om.get_ppc()
    baseMVA, bus, gen, branch = \
        ppc["baseMVA"], ppc["bus"], ppc["gen"], ppc["branch"]
    vv, _, nn, _ = om.get_idx()

    ## problem dimensions
    nb = bus.shape[0]          ## number of buses
    nl = branch.shape[0]       ## number of branches

    ## linear constraints
    A, l, u = om.linear_constraints()

    ## bounds on optimization vars
    _, xmin, xmax = om.getv()

    ## build admittance matrices
    Ybus, Yf, Yt = makeYbus(baseMVA, bus, branch)

    ## try to select an interior initial point
    ll, uu = xmin.copy(), xmax.copy()
    ll[xmin == -Inf] = -1e10   ## replace Inf with numerical proxies
    uu[xmax ==  Inf] =  1e10
    x0 = (ll + uu) / 2
    Varefs = bus[bus[:, BUS_TYPE] == REF, VA] * (pi / 180)
    ## angles set to first reference angle
    # x0[vv["i1"]["Va"]:vv["iN"]["Va"]] = Varefs[0]

    ## find branches with flow limits
    il = find((branch[:, RATE_A] != 0) & (branch[:, RATE_A] < 1e10))
    nl2 = len(il)           ## number of constrained lines

    ##-----  run opf  -----
    f_fcn = lambda x, return_hessian=False: opf_costfcn(x, om, rho, nu, z, return_hessian)
    gh_fcn = lambda x: opf_consfcn(x, om, Ybus, Yf[il, :], Yt[il,:], ppopt, il)
    hess_fcn = lambda x, lmbda, cost_mult: opf_hessfcn(x, lmbda, om, Ybus, Yf[il, :], Yt[il, :], ppopt, rho, il)

    solution = pips(f_fcn, x0, A, l, u, xmin, xmax, gh_fcn, hess_fcn, opt)
    x, f, info, lmbda, output = solution["x"], solution["f"], \
            solution["eflag"], solution["lmbda"], solution["output"]

    success = (info > 0)

    ## update solution data
    Va = x[vv["i1"]["Va"]:vv["iN"]["Va"]]
    Vm = x[vv["i1"]["Vm"]:vv["iN"]["Vm"]]
    Pg = x[vv["i1"]["Pg"]:vv["iN"]["Pg"]]
    Qg = x[vv["i1"]["Qg"]:vv["iN"]["Qg"]]

    V = Vm * exp(1j * Va)

    ##-----  calculate return values  -----
    ## update voltages & generator outputs
    bus[:, VA] = Va * 180 / pi
    bus[:, VM] = Vm
    gen[:, PG] = Pg * baseMVA
    gen[:, QG] = Qg * baseMVA
    gen[:, VG] = Vm[ gen[:, GEN_BUS].astype(int) ]

    ## compute branch flows
    Sf = V[ branch[:, F_BUS].astype(int) ] * conj(Yf * V)  ## cplx pwr at "from" bus, p["u"].
    St = V[ branch[:, T_BUS].astype(int) ] * conj(Yt * V)  ## cplx pwr at "to" bus, p["u"].
    branch[:, PF] = Sf.real * baseMVA
    branch[:, QF] = Sf.imag * baseMVA
    branch[:, PT] = St.real * baseMVA
    branch[:, QT] = St.imag * baseMVA

    ## line constraint is actually on square of limit
    ## so we must fix multipliers
    muSf = zeros(nl)
    muSt = zeros(nl)
    if len(il) > 0:
        muSf[il] = \
            2 * lmbda["ineqnonlin"][:nl2] * branch[il, RATE_A] / baseMVA
        muSt[il] = \
            2 * lmbda["ineqnonlin"][nl2:nl2+nl2] * branch[il, RATE_A] / baseMVA

    ## update Lagrange multipliers
    bus[:, MU_VMAX]  = lmbda["upper"][vv["i1"]["Vm"]:vv["iN"]["Vm"]]
    bus[:, MU_VMIN]  = lmbda["lower"][vv["i1"]["Vm"]:vv["iN"]["Vm"]]
    gen[:, MU_PMAX]  = lmbda["upper"][vv["i1"]["Pg"]:vv["iN"]["Pg"]] / baseMVA
    gen[:, MU_PMIN]  = lmbda["lower"][vv["i1"]["Pg"]:vv["iN"]["Pg"]] / baseMVA
    gen[:, MU_QMAX]  = lmbda["upper"][vv["i1"]["Qg"]:vv["iN"]["Qg"]] / baseMVA
    gen[:, MU_QMIN]  = lmbda["lower"][vv["i1"]["Qg"]:vv["iN"]["Qg"]] / baseMVA

    bus[:, LAM_P] = \
        lmbda["eqnonlin"][nn["i1"]["Pmis"]:nn["iN"]["Pmis"]] / baseMVA
    bus[:, LAM_Q] = \
        lmbda["eqnonlin"][nn["i1"]["Qmis"]:nn["iN"]["Qmis"]] / baseMVA
    branch[:, MU_SF] = muSf / baseMVA
    branch[:, MU_ST] = muSt / baseMVA

    ## package up results
    nlnN = om.getN('nln')

    results = ppc
    results["bus"], results["branch"], results["gen"], \
        results["om"], results["x"], results["f"] = \
            bus, branch, gen, om, x, f

    return results, success
def gh6(x):
    h = dot([[1.0, -1.0, 1.0], [1.0, 1.0, 1.0]], x**2) + [-2.0, -10.0]
    dh = 2 * csr_matrix([[x[0], x[0]], [-x[1], x[1]], [x[2], x[2]]],
                        dtype=float)
    g = array([])
    dg = None
    return h, g, dh, dg


def hess6(x, lam, cost_mult=1):
    mu = lam['ineqnonlin']
    Lxx = cost_mult * \
        csr_matrix([[ 0, -1,  0],
                [-1,  0, -1],
                [ 0, -1,  0]], dtype=float) + \
        csr_matrix([[2 * dot([1, 1], mu),  0, 0],
                [0, 2 * dot([-1, 1], mu), 0],
                [0, 0,  2 * dot([1, 1], mu)]], dtype=float)
    return Lxx


f_fcn = f6
gh_fcn = gh6
hess_fcn = hess6
x0 = array([1.0, 1.0, 0.0])
# solution = pips(f_fcn, x0, gh_fcn=gh_fcn, hess_fcn=hess_fcn, opt={'verbose': 2, 'comptol': 1e-9})
solution = pips(f_fcn, x0, gh_fcn=gh_fcn, hess_fcn=hess_fcn)
x, f, s, lam, out = solution["x"], solution["f"], solution["eflag"], \
        solution["lmbda"], solution["output"]
print(x, s)