def test_style_loss_raises_if_wrong_reduction(x, y) -> None:
    for mode in ['mean', 'sum', 'none']:
        StyleLoss(reduction=mode)(x, y)

    for mode in [None, 'n', 2]:
        with pytest.raises(ValueError):
            StyleLoss(reduction=mode)(x, y)
def test_style_loss_computes_grad(input_tensors: Tuple[torch.Tensor,
                                                       torch.Tensor],
                                  device: str) -> None:
    x, y = input_tensors
    x.requires_grad_()
    loss_value = StyleLoss()(x.to(device), y.to(device))
    loss_value.backward()
    assert x.grad is not None, NONE_GRAD_ERR_MSG
Example #3
0
def test_style_loss_raises_if_wrong_reduction(prediction: torch.Tensor,
                                              target: torch.Tensor) -> None:
    for mode in ['mean', 'sum', 'none']:
        StyleLoss(reduction=mode)(prediction, target)

    for mode in [None, 'n', 2]:
        with pytest.raises(KeyError):
            StyleLoss(reduction=mode)(prediction, target)
Example #4
0
def test_style_loss_computes_grad(input_tensors: Tuple[torch.Tensor,
                                                       torch.Tensor],
                                  device: str) -> None:
    prediction, target = input_tensors
    prediction.requires_grad_()
    loss_value = StyleLoss()(prediction.to(device), target.to(device))
    loss_value.backward()
    assert prediction.grad is not None, NONE_GRAD_ERR_MSG
def test_style_loss_forward(input_tensors: Tuple[torch.Tensor, torch.Tensor],
                            device: str) -> None:
    x, y = input_tensors
    loss = StyleLoss()
    loss(x.to(device), y.to(device))
def test_style_loss_init() -> None:
    StyleLoss()
Example #7
0
def test_style_loss_forward(input_tensors: Tuple[torch.Tensor, torch.Tensor],
                            device: str) -> None:
    prediction, target = input_tensors
    loss = StyleLoss()
    loss(prediction.to(device), target.to(device))