for itrial in xrange(1,args.ntrials+1): results = {} # one trial of results tprofile.info("start trial %d"%itrial) logging.info(">"*10 + "Running trial: %05d"%itrial + "<"*10) results['seed'] = get_seed() logging.info(" RNG seed: %ld"%results['seed']) fmap = get_random_map(alt_mh_expectation, seed=results['seed']) for hypo_tag, hypo_normal in [('hypo_NMH',True),('hypo_IMH',False)]: physics.info( "Finding best fit for %s under %s assumption"%(data_tag,hypo_tag)) with Timer() as t: llh_data = find_opt_bfgs( fmap, template_maker, template_settings['params'], minimizer_settings, args.save_steps, normal_hierarchy=hypo_normal, check_octant=check_octant) tprofile.info("==> elapsed time for optimizer: %s sec"%t.secs) # Store the LLH data results[hypo_tag] = llh_data trials += [results] tprofile.info("stop trial %d"%itrial) output[data_tag]['trials'] = trials to_json(output,args.outfile)
results[data_tag] = {} # 1) get "Asimov" average fiducial template: asimov_fmap = get_asimov_fmap(pseudo_data_template_maker, get_values(select_hierarchy(pseudo_data_settings['params'], normal_hierarchy=data_normal)), channel=channel) # 2) find max llh or min chisquare (and best fit free params) from matching pseudo data # to templates. for hypo_tag, hypo_normal in [('hypo_NMH',True),('hypo_IMH',False)]: physics.info("Finding best fit for %s under %s assumption"%(data_tag,hypo_tag)) tprofile.info("start optimizer") tprofile.info("Using %s"%metric_name) opt_data = find_opt_bfgs(asimov_fmap,template_maker,template_settings['params'], minimizer_settings,args.save_steps, normal_hierarchy=hypo_normal, check_octant=args.check_octant, metric_name=metric_name) tprofile.info("stop optimizer") # Store the optimum data results[data_tag][hypo_tag] = opt_data # Assemble output dict output = {'results' : results, 'template_settings' : template_settings, 'minimizer_settings' : minimizer_settings} if args.pseudo_data_settings is not None: output['pseudo_data_settings'] = pseudo_data_settings
pseudo_data_settings['params'], normal_hierarchy=data_normal)), channel=channel) # 2) find max llh or min chisquare (and best fit free params) from matching pseudo data # to templates. for hypo_tag, hypo_normal in [('hypo_NMH', True), ('hypo_IMH', False)]: physics.info("Finding best fit for %s under %s assumption" % (data_tag, hypo_tag)) tprofile.info("start optimizer") tprofile.info("Using %s" % metric_name) opt_data = find_opt_bfgs(asimov_fmap, template_maker, template_settings['params'], minimizer_settings, args.save_steps, normal_hierarchy=hypo_normal, check_octant=args.check_octant, metric_name=metric_name) tprofile.info("stop optimizer") # Store the optimum data results[data_tag][hypo_tag] = opt_data # Assemble output dict output = { 'results': results, 'template_settings': template_settings, 'minimizer_settings': minimizer_settings }
results = {} # one trial of results tprofile.info("start trial %d"%itrial) logging.info(">"*10 + "Running trial: %05d"%itrial + "<"*10) results['seed'] = get_seed() logging.info(" RNG seed: %ld"%results['seed']) # Get random map generated from asimov data (or from data_tag). fmap = get_random_map(asimov_data, seed=results['seed']) for hypo_tag, hypo_normal in [('hypo_NMH',True),('hypo_IMH',False)]: physics.info( "Finding best fit for %s under %s assumption"%(data_tag,hypo_tag)) with Timer() as t: llh_data = find_opt_bfgs( fmap, template_maker, template_settings['params'], minimizer_settings, args.save_steps, normal_hierarchy=hypo_normal, check_octant=check_octant) tprofile.info("==> elapsed time for optimizer: %s sec"%t.secs) # Store the LLH data results[hypo_tag] = llh_data trials += [results] tprofile.info("stop trial %d"%itrial) output[data_tag]['trials'] = trials to_json(output,args.outfile)
print "atm_params: ", atm_params # Prepare to store all the steps steps = {key: [] for key in atm_params.keys()} steps['llh'] = [] # Iterate over the cartesian product, and set fixed parameter to value for pos in product(*steplist): pos_dict = dict(list(pos)) print "Running at params-pos dict: ", pos_dict for k, v in pos_dict.items(): hypo_params[k]['value'] = v steps[k].append(v) with Timer() as t: llh_data = find_opt_bfgs(asimov_data_set, template_maker, hypo_params, minimizer_settings, args.save_steps, normal_hierarchy=hypo_normal) tprofile.info("==> elapsed time for optimizer: %s sec" % t.secs) steps['llh'].append(llh_data['llh'][-1]) #Store the LLH data results[data_tag][hypo_tag] = steps logging.warn("FINISHED. Saving to file: %s" % args.outfile) to_json(results, args.outfile)
for name, param in sorted(atm_params.items())] print "steplist: ",steplist print "atm_params: ",atm_params # Prepare to store all the steps steps = {key:[] for key in atm_params.keys()} steps['llh'] = [] # Iterate over the cartesian product, and set fixed parameter to value for pos in product(*steplist): pos_dict = dict(list(pos)) print "Running at params-pos dict: ",pos_dict for k,v in pos_dict.items(): hypo_params[k]['value'] = v steps[k].append(v) with Timer() as t: llh_data = find_opt_bfgs(asimov_data_set,template_maker,hypo_params, minimizer_settings,args.save_steps, normal_hierarchy=hypo_normal) tprofile.info("==> elapsed time for optimizer: %s sec"%t.secs) steps['llh'].append(llh_data['llh'][-1]) #Store the LLH data results[data_tag][hypo_tag] = steps logging.warn("FINISHED. Saving to file: %s"%args.outfile) to_json(results,args.outfile)