Example #1
0
def solve(w, m):
    if w.ndim < 4: return m / w
    elif w.ndim == 4:
        # This is slower, but handles low-hit areas near the edge better
        iw = utils.eigpow(w, -1, axes=[0, 1])
        return enmap.samewcs(array_ops.matmul(iw, m, axes=[0, 1]), m)
        #return array_ops.solve_masked(w,m,axes=[0,1])
    else:
        raise NotImplementedError("Only 2d, 3d or 4d weight maps understood")
Example #2
0
        dscov /= np.nan_to_num(
            maps.gauss_beam(modlmap, ifwhm) * maps.gauss_beam(modlmap, jfwhm))
        # dncov[sel] = 1e90 #np.inf # inf gives invertible matrix but nonsensical output, 1e90 gives noninvertible, but with eigpow sensible
        # dscov[sel] = 1e90 #np.inf

        # io.plot_img((np.fft.fftshift(ncov)),"tuncov%d%d.png"%(aindex1,aindex2),aspect='auto')
        # io.plot_img(np.log10(np.fft.fftshift(scov+ncov)),"udsncov%d%d.png"%(aindex1,aindex2),aspect='auto',lim=[-5,1])
        # io.plot_img(np.log10(np.fft.fftshift(ncov)),"uncov%d%d.png"%(aindex1,aindex2),aspect='auto',lim=[-5,1])
        # io.plot_img(np.log10(np.fft.fftshift(scov)),"usncov%d%d.png"%(aindex1,aindex2),aspect='auto',lim=[-5,1])

        # io.plot_img(np.log10(np.fft.fftshift(dscov+dncov)),"dsncov%d%d.png"%(aindex1,aindex2),aspect='auto',lim=[-5,1])
        # io.plot_img(np.log10(np.fft.fftshift(dncov)),"dncov%d%d.png"%(aindex1,aindex2),aspect='auto',lim=[-5,1])
        # io.plot_img(np.log10(np.fft.fftshift(dscov)),"dsncov%d%d.png"%(aindex1,aindex2),aspect='auto',lim=[-5,1])
        # io.plot_img(np.log10(np.fft.fftshift(ncov/dncov)),"rcov%d%d.png"%(aindex1,aindex2),aspect='auto',lim=[-5,1])

        Scov[aindex1, aindex2] = dscov[modlmap < lmax].reshape(-1)
        Ncov[aindex1, aindex2] = dncov[modlmap < lmax].reshape(-1)

        if aindex1 != aindex2:
            Scov[aindex2, aindex1] = Scov[aindex1, aindex2].copy()
        if aindex1 != aindex2:
            Ncov[aindex2, aindex1] = Ncov[aindex1, aindex2].copy()

Cov = Scov + Ncov
np.save("cov.npy", Cov)

#Cov = np.load("cov.npy")
Cov = np.rollaxis(Cov, 2)
icinv = utils.eigpow(Cov, -1)
np.save("icinv.npy", icinv)
Example #3
0
def make_geometry(shape=None,wcs=None,hole_radius=None,cmb2d_TEB=None,n2d_IQU=None,context_width=None,n=None,beam2d=None,deproject=True,iau=False,res=None,tot_pow2d=None,store_pcov=False,pcov=None):

    """
    Make covariances for brute force maxlike inpainting of CMB maps.
    Eq 3 of arXiv:1109.0286

    shape,wcs -- enmap geometry of big map
    cmb2d_TEB -- (ncomp,ncomp,Ny,Nx) 2D CMB power in physical units
    n2d_IQU -- (ncomp,ncomp,Ny,Nx) 2D noise power in physical units
    hole_radius in radians
    context_width in radians or n as number of pixels
    beam2d -- (Ny,Nx) 2D beam template
    tot_pow2d -- (ncomp,ncomp,Ny,Nx) 2D total IQU power in physical units (includes CMB, beam and noise). If this argument is provided
                 cmb2d_TEB, n2d_IQU and beam2d will be ignored.
    deproject -- whether to deproject common mode
    iau -- whether to use IAU convention for polarization
    res -- specify resolution in radians instead of inferring from enmap geometry


    """

    # Make a flat stamp geometry
    if res is None: res = np.min(np.abs(enmap.extent(shape,wcs))/shape[-2:])
    if n is None: n = int(context_width/res)

    # Get the pix-pix covariance on the stamp geometry given CMB theory, beam and 2D noise on the big map
    if pcov is None:
        if tot_pow2d is not None:
                pcov = fcov_to_rcorr(shape,wcs,tot_pow2d,n)
        else:
                pcov = stamp_pixcov_from_theory(n,cmb2d_TEB,n2d,beam2d=beam2d,iau=iau)


    # Do we have polarization?
    ncomp = pcov.shape[0]
    assert ncomp==1 or ncomp==2 or ncomp==3

    # Select the hole (m1) and context(m2) across all components
    m1,m2 = get_geometry_regions(ncomp,n,res,hole_radius)

    # --- Make sure that the pcov is in the right order vector(I,Q,U) ---
    # It is currently in (ncomp,ncomp,n,n) order
    # We transpose it to (ncomp,n,ncomp,n) order
    # so that when it is reshaped into a 2D array, a row/column will correspond to an (I,Q,U) vector
    pcov = np.transpose(pcov,(0,2,1,3))
    pcov = pcov.reshape((ncomp*n**2,ncomp*n**2))

    # Invert
    Cinv = np.linalg.inv(pcov)
    
    # Woodbury deproject common mode
    if deproject:
        # Deproject I,Q,U common mode separately
        #u = (np.zeros((n*n,ncomp,ncomp))+np.eye(ncomp)).reshape(n*n*ncomp,ncomp)
        u = np.zeros((n*n*ncomp,ncomp))
        for i in range(ncomp):
            u[i*n*n:(i+1)*n*n,i] = 1
        #u = np.ones((ncomp*n**2,1)) # Deproject mode common to all of I,Q,U
        Cinvu = np.linalg.solve(pcov,u)
        precalc = np.dot(Cinvu,np.linalg.solve(np.dot(u.T,Cinvu),u.T))
        correction = np.dot(precalc,Cinv)
        Cinv -= correction
    
    # Get matrices for maxlike solution Eq 3 of arXiv:1109.0286
    cslice = Cinv[m1][:,m1]
    mul2 = Cinv[m1][:,m2]
    mean_mul = -np.linalg.solve(cslice,mul2)
    cov = np.linalg.inv(Cinv[m1][:,m1])
    cov_root = utils.eigpow(cov,0.5)

    geometry = {}
    geometry['covsqrt'] = cov_root
    geometry['meanmul'] = mean_mul
    geometry['n'] = n
    geometry['res'] = res
    geometry['m1'] = m1
    geometry['m2'] = m2
    geometry['ncomp'] = ncomp
    geometry['hole_radius'] = hole_radius
    if store_pcov: geometry['pcov'] = pcov

    return geometry
                if bcov[i, j] == 0.: bcov[i, j] = 700000

    print(np.diagonal(bcov))
    print(bcov)
    np.savetxt(f"bcov_{seed}.txt", bcov, delimiter=',')
    np.savetxt(f"gcov_{seed}.txt", gcov, delimiter=',')
    gcorr = stats.cov2corr(gcov)
    bcorr = stats.cov2corr(bcov)
    print(gcorr.min(), gcorr.max())
    print(bcorr.min(), bcorr.max())
    io.plot_img(gcorr, f"det_gcov_{seed}.png", flip=False, lim=[0.5, 1])
    io.plot_img(bcorr, f"det_bcov_{seed}.png", flip=False, lim=[0.5, 1])
    print(seed)
    gi = np.linalg.inv(gcov)
    bi = np.linalg.inv(bcov)
    bi2 = utils.eigpow(bcov, -1)
    print(np.linalg.eigh(gcov)[0])
    print(np.linalg.eigh(bcov)[0])

pl.done("detscatter.png")

pl = io.Plotter(xyscale='linlin', xlabel='a', ylabel='r')
c = 0

for i in range(narrays):
    for j in range(i, narrays):
        v1 = vals[12][c]
        v2 = vals[13][c]
        c = c + 1
        qid1 = qids[i]
        qid2 = qids[j]
Example #5
0
def inpaint_uncorrelated_save_geometries(coords,hole_radius,ivar,output_dir,
                                         theory_fn=None,beam_fn=None,include_signal=True,
                                         pol=True,context_fraction=2./3.,
                                         deproject=True,verbose_every_nsrcs=1,comm=None):
    """
    This MPI-parallelized function will pre-calculate quantities required to inpaint a map with circular holes.
    The results will be saved to disk in output_dir. The MPI parallelization is done over the number of sources.

    Arguments
    ---------

    coords: (N,2) array-like, float
    Array containing the (dec,ra) coordinates in radians for N sources to be inpainted.

    hole_radius: float
    Each source will be inpainted with a hole of this radius in radians.

    ivar: ndmap
    (Ny,Nx) ndmap containing II inverse variance per pixel.
    QQ and UU will be assumed to be half of II, and QU to be zero.

    output_dir: string
    Directory to save results to. Specify this for the inpaint_from_saved_geometries function.

    theory_fn: function
    Function such that theory_fn(string,ells) returns the CMB+foreground power spectrum where string
    can be TT,TE,EE,BB.

    beam_fn: function
    Function such that beam_fn(ells) returns the beam transfer function.

    include_signal: bool, optional
    Whether to assume the CMB+foregrounds are present in the map. Set to False when inpainting
    split differences.

    pol: bool, optional
    Whether to jointly inpaint I/Q/U maps or only assume I maps.

    context_fraction: float
    The ratio of the width of the context region around the hole to the diameter of the hole.
    Larger fractions result in more informed inpainting, but takes longer time and memory.

    comm: MPI communicator object

    

    """
    import h5py
    from . import mpi,io
    
    if not(coords.ndim==2): raise ValueError
    if not(coords.shape[1]==2): raise ValueError
    if not(ivar.ndim==2): raise ValueError
    nsrcs = coords.shape[0]

    if not(comm is None):
        rank = comm.Get_rank()
        numcores = comm.Get_size()
        num_each,each_tasks = mpi.mpi_distribute(nsrcs,numcores)
        my_tasks = each_tasks[rank]
    else:
        comm = mpi.MPI.COMM_WORLD
        my_tasks = range(nsrcs)

    if pol:
        ncomp = 3
    else:
        ncomp = 1
        

    rtot = hole_radius * (1 + context_fraction)

    np.savetxt(f'{output_dir}/source_inpaint_attributes.txt',np.asarray([[ncomp,hole_radius,context_fraction],]),fmt='%d,%.15f,%.15f',header='ncomp,hole_radius,context_fraction')

    pixboxes = enmap.neighborhood_pixboxes(ivar.shape[-2:], ivar.wcs, coords, rtot)

    def skip_warning(task): print(f"Skipped source {task}.")

    ocoords = []
    oinds = []

    for ind,task in enumerate(my_tasks):

        pixbox = pixboxes[task]
        ithumb = ivar.extract_pixbox(pixbox)
        if ithumb is None:
            skip_warning(task)
            continue
        if not(ithumb.ndim==2): raise ValueError
        if np.any(np.asarray(ithumb.shape)<=1):
            skip_warning(task)
            continue
        if np.all(ithumb<=0):
            skip_warning(task)
            continue

        Ny,Nx = ithumb.shape

        modlmap = ithumb.modlmap()
        modrmap = ithumb.modrmap()

        if include_signal:
            scov = scov_from_theory(modlmap,theory_fn,beam_fn,iau=False,ncomp=ncomp)
        else:
            scov = 0

        ncov = ncov_from_ivar(ithumb,ncomp=ncomp)
        pcov = scov + ncov

        m1,m2 = get_regions(ncomp,modrmap,hole_radius)


        # --- Make sure that the pcov is in the right order vector(I,Q,U) ---
        # It is currently in (ncomp,ncomp,n,n) order
        # We transpose it to (ncomp,n,ncomp,n) order
        # so that when it is reshaped into a 2D array, a row/column will correspond to an (I,Q,U) vector
        pcov = np.transpose(pcov,(0,2,1,3))
        pcov = pcov.reshape((ncomp*Ny*Nx,ncomp*Ny*Nx))

        # Invert
        Cinv = np.linalg.inv(pcov)

        # Woodbury deproject common mode
        if deproject:
            # Deproject I,Q,U common mode separately
            u = np.zeros((Ny*Nx*ncomp,ncomp))
            for i in range(ncomp):
                u[i*Ny*Nx:(i+1)*Ny*Nx,i] = 1
            #u = np.ones((ncomp*n**2,1)) # Deproject mode common to all of I,Q,U
            Cinvu = np.linalg.solve(pcov,u)
            precalc = np.dot(Cinvu,np.linalg.solve(np.dot(u.T,Cinvu),u.T))
            correction = np.dot(precalc,Cinv)
            Cinv -= correction

        # Get matrices for maxlike solution Eq 3 of arXiv:1109.0286
        cslice = Cinv[m1][:,m1]
        mul2 = Cinv[m1][:,m2]
        mean_mul = -np.linalg.solve(cslice,mul2)
        cov = np.linalg.inv(Cinv[m1][:,m1])
        cov_root = utils.eigpow(cov,0.5)

        geometry = {}
        geometry['covsqrt'] = cov_root
        geometry['meanmul'] = mean_mul
        geometry['shape'] = np.asarray((Ny,Nx))
        geometry['m1'] = m1
        geometry['m2'] = m2

        with h5py.File(f'{output_dir}/source_inpaint_geometry_{task}.hdf','w') as f:
            for key in geometry:
                f.create_dataset(key,data=geometry[key])

        ocoords.append(coords[task])
        oinds.append(task)

        if verbose_every_nsrcs:
            if (ind+1)%verbose_every_nsrcs==0: print(f"Done with {ind+1} / {len(my_tasks)}...")


    ocoords = utils.allgatherv(ocoords,comm)
    oinds = utils.allgatherv(oinds,comm)
    io.save_cols(f'{output_dir}/source_inpaint_coords.txt',ocoords.swapaxes(0,1),header='Dec,RA')
    np.savetxt(f'{output_dir}/source_inpaint_task_indices.txt',oinds,fmt='%d')
Example #6
0
def get_mv(nls):
    ninv = utils.eigpow(nls, -1., axes=[0, 1])
    ncoadd = 1. / ninv.sum(axis=(0, 1))
    return ncoadd