def __init__(self, size: int, shuffle: bool = True, seed: Optional[int] = None): """ Args: size (int): the total number of data of the underlying dataset to sample from shuffle (bool): whether to shuffle the indices or not seed (int): the initial seed of the shuffle. Must be the same across all workers. If None, will use a random seed shared among workers (require synchronization among all workers). """ if not isinstance(size, int): raise TypeError( f"TrainingSampler(size=) expects an int. Got type {type(size)}." ) if size <= 0: raise ValueError( f"TrainingSampler(size=) expects a positive int. Got {size}.") self._size = size self._shuffle = shuffle if seed is None: seed = comm.shared_random_seed() self._seed = int(seed) self._rank = comm.get_rank() self._world_size = comm.get_world_size()
def default_setup(cfg, args): """ Perform some basic common setups at the beginning of a job, including: 1. Set up the detectron2 logger 2. Log basic information about environment, cmdline arguments, and config 3. Backup the config to the output directory Args: cfg (CfgNode or omegaconf.DictConfig): the full config to be used args (argparse.NameSpace): the command line arguments to be logged """ output_dir = _try_get_key(cfg, "OUTPUT_DIR", "output_dir", "train.output_dir") if comm.is_main_process() and output_dir: PathManager.mkdirs(output_dir) rank = comm.get_rank() setup_logger(output_dir, distributed_rank=rank, name="fvcore") logger = setup_logger(output_dir, distributed_rank=rank) logger.info("Rank of current process: {}. World size: {}".format( rank, comm.get_world_size())) logger.info("Environment info:\n" + collect_env_info()) logger.info("Command line arguments: " + str(args)) if hasattr(args, "config_file") and args.config_file != "": logger.info("Contents of args.config_file={}:\n{}".format( args.config_file, _highlight( PathManager.open(args.config_file, "r").read(), args.config_file), )) if comm.is_main_process() and output_dir: # Note: some of our scripts may expect the existence of # config.yaml in output directory path = os.path.join(output_dir, "config.yaml") if isinstance(cfg, CfgNode): logger.info("Running with full config:\n{}".format( _highlight(cfg.dump(), ".yaml"))) with PathManager.open(path, "w") as f: f.write(cfg.dump()) else: LazyConfig.save(cfg, path) logger.info("Full config saved to {}".format(path)) # make sure each worker has a different, yet deterministic seed if specified seed = _try_get_key(cfg, "SEED", "train.seed", default=-1) seed_all_rng(None if seed < 0 else seed + rank) # cudnn benchmark has large overhead. It shouldn't be used considering the small size of # typical validation set. if not (hasattr(args, "eval_only") and args.eval_only): torch.backends.cudnn.benchmark = _try_get_key(cfg, "CUDNN_BENCHMARK", "train.cudnn_benchmark", default=False)
def __init__(self, size: int): """ Args: size (int): the total number of data of the underlying dataset to sample from """ self._size = size assert size > 0 self._rank = comm.get_rank() self._world_size = comm.get_world_size() shard_size = (self._size - 1) // self._world_size + 1 begin = shard_size * self._rank end = min(shard_size * (self._rank + 1), self._size) self._local_indices = range(begin, end)
def __init__(self, repeat_factors, *, shuffle=True, seed=None): """ Args: repeat_factors (Tensor): a float vector, the repeat factor for each indice. When it's full of ones, it is equivalent to ``TrainingSampler(len(repeat_factors), ...)``. shuffle (bool): whether to shuffle the indices or not seed (int): the initial seed of the shuffle. Must be the same across all workers. If None, will use a random seed shared among workers (require synchronization among all workers). """ self._shuffle = shuffle if seed is None: seed = comm.shared_random_seed() self._seed = int(seed) self._rank = comm.get_rank() self._world_size = comm.get_world_size() # Split into whole number (_int_part) and fractional (_frac_part) parts. self._int_part = torch.trunc(repeat_factors) self._frac_part = repeat_factors - self._int_part
def _log_time(self, msg, avg, all_times, distributed=False): percentiles = [ np.percentile(all_times, k, interpolation="nearest") for k in [1, 5, 95, 99] ] if not distributed: logger.info( f"{msg}: avg={1.0/avg:.1f} it/s, " f"p1={percentiles[0]:.2g}s, p5={percentiles[1]:.2g}s, " f"p95={percentiles[2]:.2g}s, p99={percentiles[3]:.2g}s.") return avg_per_gpu = comm.all_gather(avg) percentiles_per_gpu = comm.all_gather(percentiles) if comm.get_rank() > 0: return for idx, avg, percentiles in zip(count(), avg_per_gpu, percentiles_per_gpu): logger.info( f"GPU{idx} {msg}: avg={1.0/avg:.1f} it/s, " f"p1={percentiles[0]:.2g}s, p5={percentiles[1]:.2g}s, " f"p95={percentiles[2]:.2g}s, p99={percentiles[3]:.2g}s.")